Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to thos...Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to those from a shop with one-piece transfer lots. Next, a mathematical programming model for minimizing lead time in the mixed-model job shop is presented, in which one-piece transfer lots are used. Key factors affecting lead time are found by analyzing the sum of the longest setup time of individual items among the shared processes (SLST) and the longest processing time of individual items among processes (LPT). And lead time can be minimized by cutting down the SLST and LPT. Reduction of the SLST is described as a traveling salesman problem (TSP), and the minimum of the SLST is solved through job shop scheduling. Removing the bottleneck and leveling the production line optimize the LPT. If the number of items produced is small, the routings are relatively short, and items and facilities are changed infrequently, the optimal schedule will remain valid. Finally a brief example serves to illustrate the method.展开更多
A new concept of multi-shop (M ) is put forward which contains all basic shops including open shop (O), job shop (J ), flow shop (F ) and hybrid flow shop (H ) so that these basic shop can be scheduled toget...A new concept of multi-shop (M ) is put forward which contains all basic shops including open shop (O), job shop (J ), flow shop (F ) and hybrid flow shop (H ) so that these basic shop can be scheduled together. Several algorithms including ant colony optimization (ACO), most work remaining (MWR), least work remaining (LWR), longest processing time (LPT) and shortest processing time (SPT) are used for scheduling the M. Numerical experiments of the M adopting data of some car and reC series benchmark instances are tested. The results show that the ACO algorithm has better performance for scheduling the M than the other algorithms, if minimizing the makespan ( Cmax^*) is taken as the objective function. As a comparison, the separate shops contained in the M are also scheduled by the ACO algorithm for the same objective function, when the completing time of the jobs in the previous shop is taken as the ready time of these jobs in the following shop. The results show that the M has the advantage of shortening the makespan upon separate shops.展开更多
基金This project is supported by National Natural Science Foundation of China (No.70372062, No.70572044)Program for New Century Excellent Talents in University of China (No.NCET-04-0240).
文摘Firstly an overview of the potential impact on work-in-process (WIP) and lead time is provided when transfer lot sizes are undifferentiated from processing lot sizes. Simple performance examples are compared to those from a shop with one-piece transfer lots. Next, a mathematical programming model for minimizing lead time in the mixed-model job shop is presented, in which one-piece transfer lots are used. Key factors affecting lead time are found by analyzing the sum of the longest setup time of individual items among the shared processes (SLST) and the longest processing time of individual items among processes (LPT). And lead time can be minimized by cutting down the SLST and LPT. Reduction of the SLST is described as a traveling salesman problem (TSP), and the minimum of the SLST is solved through job shop scheduling. Removing the bottleneck and leveling the production line optimize the LPT. If the number of items produced is small, the routings are relatively short, and items and facilities are changed infrequently, the optimal schedule will remain valid. Finally a brief example serves to illustrate the method.
基金This project is supported by National Natural Science Foundation of China (No. 50575137)Provincial Natural Science Foundation of Zhejiang, China (No. Z604342)Scientific Research Fund of Zhejiang Provincial Educational Committee, China (No. 20051643).
文摘A new concept of multi-shop (M ) is put forward which contains all basic shops including open shop (O), job shop (J ), flow shop (F ) and hybrid flow shop (H ) so that these basic shop can be scheduled together. Several algorithms including ant colony optimization (ACO), most work remaining (MWR), least work remaining (LWR), longest processing time (LPT) and shortest processing time (SPT) are used for scheduling the M. Numerical experiments of the M adopting data of some car and reC series benchmark instances are tested. The results show that the ACO algorithm has better performance for scheduling the M than the other algorithms, if minimizing the makespan ( Cmax^*) is taken as the objective function. As a comparison, the separate shops contained in the M are also scheduled by the ACO algorithm for the same objective function, when the completing time of the jobs in the previous shop is taken as the ready time of these jobs in the following shop. The results show that the M has the advantage of shortening the makespan upon separate shops.