Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in ...Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.展开更多
Using the extended Blonder-Tinkham-Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2-y2 + idly mixed wave superconductor (q/I/dx2-y2 + idly) junctions. That is...Using the extended Blonder-Tinkham-Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2-y2 + idly mixed wave superconductor (q/I/dx2-y2 + idly) junctions. That is different from the case in d- and p-wave superconductor junctions. When the angle α between a-axis of the dx2-y2 wave superconductor and the interface normal is π/4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak (ZBCP) may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor F are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position of bias conductance peak (BCP) depends strongly on the amplitude ratio of two components for dx2-y2 + idxy mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q/I/dx2-y2 + idxy junctions, it can distinguish dx2-y2 + idxy mixed wave superconductor from d- and p-wave one.展开更多
Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) dep...Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.展开更多
In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of...In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.展开更多
In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vorte...In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vortex, the governing equations for the vortex were established in column coordinates with the balance of gradient wind. Based on this, the type of mixed waves and their dispersion characteristics were deduced by solving the linear model. Two numerical simulations with triple-nested domains--one idealized large-eddy simulation and one of a TPV that took place on 14 August 2006---were also carried out. The aim of the simulations was to validate the mixed wave deduced from the governing equations. The high-resolution model output data were analyzed and the results showed that the tangential flow field of the TPV in the form of center heating was cyclonic and convergent in the lower levels and anticyclonic and divergent in the upper levels. The simulations also showed that the vorticity of the vortex is uneven and might have shear flow along the radial direction. The changing vorticity causes the formation and spreading of vortex Rossby (VR) waves, and divergence will cause changes to the n^otion of the excitation and evolution of inertial gravity (IG) waves. Therefore, the vortex may contain what we call mixed :inertial gravity-vortex Rossby (IG-VR) waves. It is suggested that some strongly developed TPVs should be studied in the future, because of their effects on weather in downstream areas.展开更多
Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements;however,it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimen...Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements;however,it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimental system.This paper presents a feasibility study on the measurement of residual stress in a metal plate using a nonlinear Lamb wave-mixing technique.The resonant conditions for two Lamb waves to generate a mixing frequency wave are obtained via theoretical analysis.Finite element simulations are performed to investigate the nonlinear interactions between the two Lamb waves.Results show that two incident A0 waves interact in regions of material nonlinearity and generate a rightward S0 wave at the sum frequency.Residual stress measurement experiments are conducted on steel plate specimens using the collinear Lamb wave-mixing technique.By setting different delays for two transmitters,the generated sum-frequency component at different spatial locations is measured.Experimental results show that the spatial distribution of the amplitude of the sum-frequency component agrees well with the spatial distribution of the residual stress measured using X-rays.The proposed collinear Lamb wave-mixing method is effective for measuring the distribution of residual stress in metal plates.展开更多
Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal wav...Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.展开更多
An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation sin...An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.展开更多
In this paper the generation of four-wave mixing (FWM) signal using a noncycling transition of caesium atoms is investigated when the pumping laser is locked to the transition 6S1/2F= 4→6P3/2^F1 = 4, and meanwhile ...In this paper the generation of four-wave mixing (FWM) signal using a noncycling transition of caesium atoms is investigated when the pumping laser is locked to the transition 6S1/2F= 4→6P3/2^F1 = 4, and meanwhile the probe frequency is scanned across the 6S1/2F = 4→6P3/2 transition. The efficiency of the four-wave mixing signal as a function of the intensity of the pumping beams and the detuning of the pumping beams is also studied. In order to increase the detection efficiency, a repumping laser which is resonant with 6S1/2F = 3→6P3/2F′= 4 transition is used. A theoretical model is also introduced, and the theoretical results are in qualitative agreement with experimental ones.展开更多
By adjusting the polarisation state of the pump at 805 nm parallel to slow (x) and fast (y) axes of the highly birefringent photonic crystal fibre with zero dispersion wavelengths 790 nm and 750 nm, this paper dem...By adjusting the polarisation state of the pump at 805 nm parallel to slow (x) and fast (y) axes of the highly birefringent photonic crystal fibre with zero dispersion wavelengths 790 nm and 750 nm, this paper demonstrates the efficient polarisation-sensitive four wave mixing involved in pump, anti-Stokes and Stokes signals and soliton self- frequency shift effects induced by the phase-matching between red-shifted solitons and blue-shifted dispersive waves. If the reduction of coupling efficiency to the circular pump laser mode or other circular fibres due to asymmetry of the core is neglected, more than 98% of the total input power is kept in a single linear polarisation. Controlled dispersion characteristic of the doublet of fundamental guided-modes results in achieving light field strongly confined in principal axes of photonic crystal fibre, and enhancing the corresponding nonlinear-optical process through the remarkable nonlinear birefringence.展开更多
A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes(GNFs),including sum-and difference-frequency generation,as well as four-wave mixing.Our analysis s...A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes(GNFs),including sum-and difference-frequency generation,as well as four-wave mixing.Our analysis shows that molecular-scale GNFs support quantum plasmons in the visible spectrum region,and significant enhancement of nonlinear optical wave mixing is achieved.Specifically,the second-and third-order wave-mixing polarizabilities of GNFs are dramatically enhanced,provided that one(or more) of the input or output frequencies coincide with a quantum plasmon resonance.Moreover,by embedding a cavity into hexagonal GNFs,we show that one can break the structural inversion symmetry and enable otherwise forbidden second-order wave mixing,which is found to be enhanced by the quantum plasmon resonance too.This study reveals that the molecular-sized graphene could be used in the quantum regime for nanoscale nonlinear optical devices and ultrasensitive molecular sensors.展开更多
This paper reports the implementation and theoretical model for analyzing an optical CDMA/DWDM hybrid system to reduce two major problems,the Inter-Symbol Interference(ISI)and the Four-Wave Mixing(FWM)effects and impr...This paper reports the implementation and theoretical model for analyzing an optical CDMA/DWDM hybrid system to reduce two major problems,the Inter-Symbol Interference(ISI)and the Four-Wave Mixing(FWM)effects and improve the performance of optical subscriber access networks by using Zero Cross-Correlation(ZCC)optical codes,which helps to reduce the effect of the Multiple Access Interference(MAI).A squeezing method is used in the proposed hybrid system to completely suppress the ISI.In this method,the sequence interval of the signature code is squeezed into a duration of less than one-bit.The hybrid system is capable of accommodating 120 optical CDMA users carried by only 10 DWDM wavelengths spaced by 0.2 nm with 60 Gb/s/wavelength transmitted over 105.075 km of optical fiber.The result shows that the optimum interval of the code sequence is a quarter(i.e.,25%)of the bit duration.Moreover,the results reveal that the CDMA technology based on the spread spectrum is capable of increasing the nonlinear tolerance of the proposed hybrid system as the energy of bits is distributed over the chip sequence code.Also,the number of ones/weight and the positions between them have a significant effect on the performance of the proposed hybrid system.展开更多
Based on the long-term buoy data from the Tropical Atmosphere Ocean ( TAO ) —array during the TOGA ( Tropical Ocean and Global Atmosphere ) Program (19801996), the propagation acting of the Equatorial planetary waves...Based on the long-term buoy data from the Tropical Atmosphere Ocean ( TAO ) —array during the TOGA ( Tropical Ocean and Global Atmosphere ) Program (19801996), the propagation acting of the Equatorial planetary waves on the Western Equatorial Pacific warm pool heat is analyzed. Results show that the zonal heat transmission in the Western Equatorial Pacific takes palace mainly in the subsurface water and spreads eastwards along the thermocline; while the seasonal westward-spreading heat change structure occurs in the mixed layers in the middle and western Pacific. The standing-form transmission in the western Pacific appears in the thermocline layer, while in the eastern pacific, it exists in the mixed layer as well as in the thermocline layer. The standing-form and eastward-spreading sign of zonal heat transmitting in the upper water is predominant and strong, and the westward sign is weak.The component force of Kelvin Equatorial wave pressure runs through the western and eastern Equatorial pacific, and transmits heat energy eastwards. And the heat transmitted by zonal current component occurs mostly in the western Pacific; The heat transmitted by the component force of Rossby wave pressure mainly appears in the eastern and middle areas of the Pacific, while the zonal current component transmitting occurs mainly in the western Pacific; Mixed-Rossby gravity wave’s action on the zonal current is stronger than that of the thermocline layer. In the mean state, the standing wave model of Equatorial Pacific up layer ocean temperature confines the transport of western Pacific warm pool heat to the eastern Pacific. Under abnormal conditions, the standing wave model of Equatorial Pacific up layer ocean temperature weakens, the eastwardly transmitting model enhances, and subsequently n^the El Ni o event occurs.展开更多
The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured l...The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.展开更多
In the central Bohai Sea, both historical data and in situ observations show that the distribution of high chlorophyll concentration is consistent with warm water. The previous studies confirm that the warm water is c...In the central Bohai Sea, both historical data and in situ observations show that the distribution of high chlorophyll concentration is consistent with warm water. The previous studies confirm that the warm water is caused by a joint effect of wave and tidal mixing. In this paper, the authors have coupled the Princeton ocean model (POM) with a biochemical model to further investigate the formation of the high chlorophyll concentration. When the wave mixing is excluded, the water temperature is lower and the chlorophyll concentration is also lower than the observation. However, if the wave mixing is included, strong wave mixing in the upper layer brings the warm water downward and nutrients upward so that both temperature and nutrients tend to be uniformly high from the surface to the bottom. This provides an environment which is favorable for the growth of the phytoplankton. Therefore the chlorophyll concentration, as a symbol of phytoplankton, shows high value in the central Bohai Sea. In conclusion, the wave mixing plays an important role in the formation of high chlorophyll concentration in the central Bohai Sea.展开更多
The vertical mixing parameterization scheme,by providing the eff ects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes si...The vertical mixing parameterization scheme,by providing the eff ects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes signifi cant impacts on model performance.The Yellow Sea Cold Water Mass(YSCWM),as the most striking and unique phenomenon in the Yellow Sea during summer,is dramatically aff ected by vertical mixing process during its each stage and therefore seriously sensitive to the proper choice of parameterization scheme.In this paper,a hindcast of YSCWM in winter of 2006 was implemented by using the Regional Ocean Modeling System(ROMS).Three popular parameterization schemes,including the level 2.5 Mellor-Yamada closure(M-Y 2.5),Generic Length Scale closure(GLS)and K-Profi le Parameterization(KPP),were tested and compared with each other by conducting a series of sensitivity model experiments.The infl uence of diff erent parameterization schemes on modeling the YSCWM was then carefully examined and assessed based on these model experiments.Although reasonable thermal structure and its seasonal variation were well reproduced by all schemes,considerable diff erences could still be found among all experiments.A warmer and spatially smaller simulation of YSCWM,with very strong thermocline,appeared in M-Y 2.5 experiment,while a spatially larger YSCWM with shallow mixed layer was found in GLS and KPP schemes.Among all the experiments,the discrepancy,indicated by core temperature,appeared since spring,and grew gradually by the end of November.Additional experiments also confi rmed that the increase of background diff usivity could eff ectively weaken the YSCWM,in either strength or coverage.Surface wave,another contributor in upper layer,was found responsible for the shrinkage of YSCWM coverage.The treatment of wave eff ect as an additional turbulence production term in prognostic equation was shown to be more superior to the strategy of directly increasing diff usivity for a coastal region.展开更多
In this paper,we study quadrature squeezings of two Bose-Einstein condensates with collision and non- classical properties of pair entanglement in four wave mixing in Bose-Einstein condensates.With the aid of a numeri...In this paper,we study quadrature squeezings of two Bose-Einstein condensates with collision and non- classical properties of pair entanglement in four wave mixing in Bose-Einstein condensates.With the aid of a numerical method,we find that the two modes(pair entanglement modes)α_1 and α_2 may exhibit quadrature squeezing,in which they are affected by the initial phase.It is shown that the two pump modes exhibit the same super-Poissonian distri- bution.The analysis for the mode-mode correlation shows that there always exists a violation of the Cauchy-Schwartz inequality,which means that correlation between the two pump modes is nonclassical.展开更多
The fully oxidized state of polyaniline (PANI), pernigraniline (PN), was synthesized by oxidation of the emeraldine base form of PAM dissolved in NMP solvent with m-chloroperoxybenzoic acid. The resulted PN was charac...The fully oxidized state of polyaniline (PANI), pernigraniline (PN), was synthesized by oxidation of the emeraldine base form of PAM dissolved in NMP solvent with m-chloroperoxybenzoic acid. The resulted PN was characterized by FTIR and UV-Visible spectra. The third-order nonlinear optical properties of PN in concentrated sulfuric acid (PN/H2SO4) were measured by a degenerated four wave mixing (DFWM) method. The results obtained suggest that the soliton-pair intermediate state associated with the degenerated state does not play a major role in the third order nonlinear optical properties of PANI.展开更多
We have numerically investigated the biphoton generation rate as a function of several parameters in the sponta- neous four-wave mixing in cold atoms. It has been found that the biphoton generation rate can easily rea...We have numerically investigated the biphoton generation rate as a function of several parameters in the sponta- neous four-wave mixing in cold atoms. It has been found that the biphoton generation rate can easily reach saturation with the intensity of the coupling laser increasing. The saturation intensity is mainly dependent on the dephasing rate of the ground states, unrelated to the pumping laser. It implies that though the biphoton waveform can be manipulated by the coupling laser, the generation rate of the biphoton cannot increase markedly after the saturation. The saturation effect also suggests that there is an optimal coupling laser for obtaining the largest biphoton generation rate with a sufficiently long coherence time.展开更多
Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power o...Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power of 19.5 dBm and a conversion bandwidth of 28 nm have been obtained, which are limited by the continuous wave (CW) laser wavelength range and tunability of optical band pass filters (OBPFs).展开更多
基金The National Basic Research Program of China under contract No.2012CB957803
文摘Utilizing the 45 a European Centre for Medium-Range Weather Forecasts (ECMWF) reanalysis wave da- ta (ERA-40), the long-term trend of the sea surface wind speed and (wind wave, swell, mixed wave) wave height in the global ocean at grid point 1.5°× 1.5° during the last 44 a is analyzed. It is discovered that a ma- jority of global ocean swell wave height exhibits a significant linear increasing trend (2-8 cm/decade), the distribution of annual linear trend of the significant wave height (SWH) has good consistency with that of the swell wave height. The sea surface wind speed shows an annually linear increasing trend mainly con- centrated in the most waters of Southern Hemisphere westerlies, high latitude of the North Pacific, Indian Ocean north of 30°S, the waters near the western equatorial Pacific and low latitudes of the Atlantic waters, and the annually linear decreasing mainly in central and eastern equator of the Pacific, Juan. Fernandez Archipelago, the waters near South Georgia Island in the Atlantic waters. The linear variational distribution characteristic of the wind wave height is similar to that of the sea surface wind speed. Another find is that the swell is dominant in the mixed wave, the swell index in the central ocean is generally greater than that in the offshore, and the swell index in the eastern ocean coast is greater than that in the western ocean inshore, and in year-round hemisphere westerlies the swell index is relatively low.
文摘Using the extended Blonder-Tinkham-Klapwijk (BTK) theory, this paper calculates the tunnelling conductance in quantum wire/insulator/dx2-y2 + idly mixed wave superconductor (q/I/dx2-y2 + idly) junctions. That is different from the case in d- and p-wave superconductor junctions. When the angle α between a-axis of the dx2-y2 wave superconductor and the interface normal is π/4, there follows a rather distinctive tunnelling conductance. The zero-bias conductance peak (ZBCP) may or may not appear in the tunnelling conductance. Both the interface potential z and the quasi-particle lifetime factor F are smaller, there is no ZBCP. Otherwise, the ZBCP will appear. The position of bias conductance peak (BCP) depends strongly on the amplitude ratio of two components for dx2-y2 + idxy mixed wave. The low and narrow ZBCP may coexist with the BCP in the tunnelling conductance. Using those features in the tunnelling conductance of q/I/dx2-y2 + idxy junctions, it can distinguish dx2-y2 + idxy mixed wave superconductor from d- and p-wave one.
基金The National Natural Science Foundation of China No.40730842the"973"project of China under contract No.2006CB403605
文摘Previously, most ocean circulation models have overlooked the role of the surface waves. As a result, these models have produced insufficient vertical mixing, with an under - prediction of the ,nixing layer (ML) depth and an over - prediction of the sea surface temperature (SST), particularly during the summer season. As the ocean surface layer determines the lower boundary conditions of the atmosphere, this deficiency has severely limited the performance of the coupled ocean - atmospheric models and hence the climate studies. To overcome this shortcoming, a new parameterization for the wave effects in the ML model that will correct this systematic error of insufficient mixing. The new scheme has enabled the mixing layer to deepen, the surface excessive heating to be corrected, and an excellent agreement with observed global climatologic data. The study indicates that the surface waves are essential for ML formation, and that they are the primer drivers of the upper ocean dynamics; therefore, they are critical for climate studies.
文摘In this article, we study the impacts of nonlinearity and dispersion on signals likely to propagate in the context of the dynamics of four-wave mixing. Thus, we use an indirect resolution technique based on the use of the iB-function to first decouple the nonlinear partial differential equations that govern the propagation dynamics in this case, and subsequently solve them to propose some prototype solutions. These analytical solutions have been obtained;we check the impact of nonlinearity and dispersion. The interest of this work lies not only in the resolution of the partial differential equations that govern the dynamics of wave propagation in this case since these equations not at all easy to integrate analytically and their analytical solutions are very rare, in other words, we propose analytically the solutions of the nonlinear coupled partial differential equations which govern the dynamics of four-wave mixing in optical fibers. Beyond the physical interest of this work, there is also an appreciable mathematical interest.
基金supported by the National Key Basic Research and Development Project of China(Grant No.2012CB417202)the National Nature Science Fund of China(Grant No.41175045)+1 种基金the Special Fund for Meteorological Research in the Public Interest(Grant Nos.GYHY201006014,GYHY201206042 and GYHY201106003)the Sichuan Meteorological Bureau Fund for Young Scholars(Grant No.2011YOUTH02)
文摘In terms of its dynamics, The Tibetan Plateau Vortex (TPV) is assumed to be a vortex in the botmdary layer forced by diabatic heating and friction. In order to analyze the basic characteristics of waves in the vortex, the governing equations for the vortex were established in column coordinates with the balance of gradient wind. Based on this, the type of mixed waves and their dispersion characteristics were deduced by solving the linear model. Two numerical simulations with triple-nested domains--one idealized large-eddy simulation and one of a TPV that took place on 14 August 2006---were also carried out. The aim of the simulations was to validate the mixed wave deduced from the governing equations. The high-resolution model output data were analyzed and the results showed that the tangential flow field of the TPV in the form of center heating was cyclonic and convergent in the lower levels and anticyclonic and divergent in the upper levels. The simulations also showed that the vorticity of the vortex is uneven and might have shear flow along the radial direction. The changing vorticity causes the formation and spreading of vortex Rossby (VR) waves, and divergence will cause changes to the n^otion of the excitation and evolution of inertial gravity (IG) waves. Therefore, the vortex may contain what we call mixed :inertial gravity-vortex Rossby (IG-VR) waves. It is suggested that some strongly developed TPVs should be studied in the future, because of their effects on weather in downstream areas.
基金National Natural Science Foundation of China(Grant Nos.11972053,12274012)。
文摘Harmonic nonlinear ultrasound can offer high sensitivity for residual stress measurements;however,it cannot be used for local stress measurements at a point in space and exhibits nonlinear distortions in the experimental system.This paper presents a feasibility study on the measurement of residual stress in a metal plate using a nonlinear Lamb wave-mixing technique.The resonant conditions for two Lamb waves to generate a mixing frequency wave are obtained via theoretical analysis.Finite element simulations are performed to investigate the nonlinear interactions between the two Lamb waves.Results show that two incident A0 waves interact in regions of material nonlinearity and generate a rightward S0 wave at the sum frequency.Residual stress measurement experiments are conducted on steel plate specimens using the collinear Lamb wave-mixing technique.By setting different delays for two transmitters,the generated sum-frequency component at different spatial locations is measured.Experimental results show that the spatial distribution of the amplitude of the sum-frequency component agrees well with the spatial distribution of the residual stress measured using X-rays.The proposed collinear Lamb wave-mixing method is effective for measuring the distribution of residual stress in metal plates.
基金supported by the Key Program of the National Natural Science Foundation of China under contract No.41030855
文摘Many observations show that in the Yellow Sea internal tidal waves (ITWs) possess the remarkable characteristics of internal Kelvin wave, and in the South Yellow Sea (SYS) the nonlinear evolution of internal tidal waves is one of the mechanisms producing internal solitary waves (ISWs), which is different from the generation mechanism in the case where the semidiurnal tidal current flows over topographic drops. In this paper, the model of internal Kelvin wave with continuous stratification is given, and an elementary numerical study of nonlinear evolution of ITWs is made for the SYS, using the generalized KdV model (GKdV model for short) for a continuous stratified ocean, in which the different effects of background barotropic ebb and flood currents are considered. Moreover, the parameterization of vertical turbulent mixing caused by ITWs and ISWs in the SYS is studied, using a parameterization scheme which was applied to numerical experiments on the breaking of ISWs by Vlasenko and Hutter in 2002. It is found that the vertical turbulent mixing caused by internal waves is very strong within the upper layer with depth less than about 30m, and the vertical turbulent mixing caused by ISWs is stronger than that by ITWs.
基金China-Korea Cooperation Project on the development of oceanic monitoring and prediction system on nuclear safetythe Project of the National Programme on Global Change and Air-sea Interaction under contract No.GASI-03-IPOVAI-05
文摘An operational ocean circulation-surface wave coupled forecasting system for the seas off China and adjacent areas(OCFS-C) is developed based on parallelized circulation and wave models. It has been in operation since November 1, 2007. In this paper we comprehensively present the simulation and verification of the system, whose distinguishing feature is that the wave-induced mixing is coupled in the circulation model. In particular, with nested technique the resolution in the China's seas has been updated to(1/24)° from the global model with(1/2)°resolution. Besides, daily remote sensing sea surface temperature(SST) data have been assimilated into the model to generate a hot restart field for OCFS-C. Moreover, inter-comparisons between forecasting and independent observational data are performed to evaluate the effectiveness of OCFS-C in upper-ocean quantities predictions, including SST, mixed layer depth(MLD) and subsurface temperature. Except in conventional statistical metrics, non-dimensional skill scores(SS) is also used to evaluate forecast skill. Observations from buoys and Argo profiles are used for lead time and real time validations, which give a large SS value(more than 0.90). Besides, prediction skill for the seasonal variation of SST is confirmed. Comparisons of subsurface temperatures with Argo profiles data indicate that OCFS-C has low skill in predicting subsurface temperatures between 100 m and 150 m. Nevertheless, inter-comparisons of MLD reveal that the MLD from model is shallower than that from Argo profiles by about 12 m, i.e., OCFS-C is successful and steady in MLD predictions. Validation of 1-d, 2-d and 3-d forecasting SST shows that our operational ocean circulation-surface wave coupled forecasting model has reasonable accuracy in the upper ocean.
基金Project supported by the National Natural Science Foundation of China (Grant No 60378004) and the Youth Science Foundation of Shanxi Province,China (Grant Nos 20031004 and 20041013).
文摘In this paper the generation of four-wave mixing (FWM) signal using a noncycling transition of caesium atoms is investigated when the pumping laser is locked to the transition 6S1/2F= 4→6P3/2^F1 = 4, and meanwhile the probe frequency is scanned across the 6S1/2F = 4→6P3/2 transition. The efficiency of the four-wave mixing signal as a function of the intensity of the pumping beams and the detuning of the pumping beams is also studied. In order to increase the detection efficiency, a repumping laser which is resonant with 6S1/2F = 3→6P3/2F′= 4 transition is used. A theoretical model is also introduced, and the theoretical results are in qualitative agreement with experimental ones.
基金partly supported by the National Basic Research Program (Grant Nos. 2010CB327605 and 2010CB328300)Nationa lHigh-Technology Research and Development Program of China (Grant Nos. 2007AA03Z447 and 2009AA01Z220)+2 种基金the National Natural Science Foundation of China (Grant No. 60807022)the Key Grant of Ministry of Education of China (Grant No. 109015)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070013001)
文摘By adjusting the polarisation state of the pump at 805 nm parallel to slow (x) and fast (y) axes of the highly birefringent photonic crystal fibre with zero dispersion wavelengths 790 nm and 750 nm, this paper demonstrates the efficient polarisation-sensitive four wave mixing involved in pump, anti-Stokes and Stokes signals and soliton self- frequency shift effects induced by the phase-matching between red-shifted solitons and blue-shifted dispersive waves. If the reduction of coupling efficiency to the circular pump laser mode or other circular fibres due to asymmetry of the core is neglected, more than 98% of the total input power is kept in a single linear polarisation. Controlled dispersion characteristic of the doublet of fundamental guided-modes results in achieving light field strongly confined in principal axes of photonic crystal fibre, and enhancing the corresponding nonlinear-optical process through the remarkable nonlinear birefringence.
基金Project supported by the National Natural Science Foundation of China(Grant No.11947007)the Natural Science Foundation of Guangdong Province,China(Grant No.2019A1515011499)the Department of Education of Guangdong Province,China(Grant No.2019KTSCX087)。
文摘A distant-neighbor quantum-mechanical method is used to study the nonlinear optical wave mixing in graphene nanoflakes(GNFs),including sum-and difference-frequency generation,as well as four-wave mixing.Our analysis shows that molecular-scale GNFs support quantum plasmons in the visible spectrum region,and significant enhancement of nonlinear optical wave mixing is achieved.Specifically,the second-and third-order wave-mixing polarizabilities of GNFs are dramatically enhanced,provided that one(or more) of the input or output frequencies coincide with a quantum plasmon resonance.Moreover,by embedding a cavity into hexagonal GNFs,we show that one can break the structural inversion symmetry and enable otherwise forbidden second-order wave mixing,which is found to be enhanced by the quantum plasmon resonance too.This study reveals that the molecular-sized graphene could be used in the quantum regime for nanoscale nonlinear optical devices and ultrasensitive molecular sensors.
基金This work was supported by Multimedia University(Malaysia),project SAP ID:MMUI/160092.
文摘This paper reports the implementation and theoretical model for analyzing an optical CDMA/DWDM hybrid system to reduce two major problems,the Inter-Symbol Interference(ISI)and the Four-Wave Mixing(FWM)effects and improve the performance of optical subscriber access networks by using Zero Cross-Correlation(ZCC)optical codes,which helps to reduce the effect of the Multiple Access Interference(MAI).A squeezing method is used in the proposed hybrid system to completely suppress the ISI.In this method,the sequence interval of the signature code is squeezed into a duration of less than one-bit.The hybrid system is capable of accommodating 120 optical CDMA users carried by only 10 DWDM wavelengths spaced by 0.2 nm with 60 Gb/s/wavelength transmitted over 105.075 km of optical fiber.The result shows that the optimum interval of the code sequence is a quarter(i.e.,25%)of the bit duration.Moreover,the results reveal that the CDMA technology based on the spread spectrum is capable of increasing the nonlinear tolerance of the proposed hybrid system as the energy of bits is distributed over the chip sequence code.Also,the number of ones/weight and the positions between them have a significant effect on the performance of the proposed hybrid system.
文摘Based on the long-term buoy data from the Tropical Atmosphere Ocean ( TAO ) —array during the TOGA ( Tropical Ocean and Global Atmosphere ) Program (19801996), the propagation acting of the Equatorial planetary waves on the Western Equatorial Pacific warm pool heat is analyzed. Results show that the zonal heat transmission in the Western Equatorial Pacific takes palace mainly in the subsurface water and spreads eastwards along the thermocline; while the seasonal westward-spreading heat change structure occurs in the mixed layers in the middle and western Pacific. The standing-form transmission in the western Pacific appears in the thermocline layer, while in the eastern pacific, it exists in the mixed layer as well as in the thermocline layer. The standing-form and eastward-spreading sign of zonal heat transmitting in the upper water is predominant and strong, and the westward sign is weak.The component force of Kelvin Equatorial wave pressure runs through the western and eastern Equatorial pacific, and transmits heat energy eastwards. And the heat transmitted by zonal current component occurs mostly in the western Pacific; The heat transmitted by the component force of Rossby wave pressure mainly appears in the eastern and middle areas of the Pacific, while the zonal current component transmitting occurs mainly in the western Pacific; Mixed-Rossby gravity wave’s action on the zonal current is stronger than that of the thermocline layer. In the mean state, the standing wave model of Equatorial Pacific up layer ocean temperature confines the transport of western Pacific warm pool heat to the eastern Pacific. Under abnormal conditions, the standing wave model of Equatorial Pacific up layer ocean temperature weakens, the eastwardly transmitting model enhances, and subsequently n^the El Ni o event occurs.
文摘The interest in tailoring light in all its degrees of freedom is steadily gaining traction,driven by the tremendous developments in the toolkit for the creation,control and detection of what is now called structured light.Because the complexity of these optical fields is generally understood in terms of interference,the tools have historically been linear optical elements that create the desired superpositions.For this reason,despite the long and impressive history of nonlinear optics,only recently has the spatial structure of light in nonlinear processes come to the fore.In this review we provide a concise theoretical framework for understanding nonlinear optics in the context of structured light,offering an overview and perspective on the progress made,and the challenges that remain.
基金The National Natural Science Foundation of the Ministry of Science and Technology of China under contract Nos 40930844 and 41106094the Ph.D.Programs Foundating of Ministry of Education of China under contract No.2011013213001
文摘In the central Bohai Sea, both historical data and in situ observations show that the distribution of high chlorophyll concentration is consistent with warm water. The previous studies confirm that the warm water is caused by a joint effect of wave and tidal mixing. In this paper, the authors have coupled the Princeton ocean model (POM) with a biochemical model to further investigate the formation of the high chlorophyll concentration. When the wave mixing is excluded, the water temperature is lower and the chlorophyll concentration is also lower than the observation. However, if the wave mixing is included, strong wave mixing in the upper layer brings the warm water downward and nutrients upward so that both temperature and nutrients tend to be uniformly high from the surface to the bottom. This provides an environment which is favorable for the growth of the phytoplankton. Therefore the chlorophyll concentration, as a symbol of phytoplankton, shows high value in the central Bohai Sea. In conclusion, the wave mixing plays an important role in the formation of high chlorophyll concentration in the central Bohai Sea.
基金Supported by the National Natural Science Foundation of China(Nos.41606005,41430963,41676004)the National Program on Global Change and Air-Sea Interaction(No.GASI-GEOGE-03)+1 种基金the Liaoning Revitalization Talents Program(No.XLYC1807161)the Dalian Highlevel Talents Innovation Support Plan(No.2017RQ063)。
文摘The vertical mixing parameterization scheme,by providing the eff ects of some explicitly missed physical processes and more importantly closing the energy budgets,is a critical model component and therefore imposes signifi cant impacts on model performance.The Yellow Sea Cold Water Mass(YSCWM),as the most striking and unique phenomenon in the Yellow Sea during summer,is dramatically aff ected by vertical mixing process during its each stage and therefore seriously sensitive to the proper choice of parameterization scheme.In this paper,a hindcast of YSCWM in winter of 2006 was implemented by using the Regional Ocean Modeling System(ROMS).Three popular parameterization schemes,including the level 2.5 Mellor-Yamada closure(M-Y 2.5),Generic Length Scale closure(GLS)and K-Profi le Parameterization(KPP),were tested and compared with each other by conducting a series of sensitivity model experiments.The infl uence of diff erent parameterization schemes on modeling the YSCWM was then carefully examined and assessed based on these model experiments.Although reasonable thermal structure and its seasonal variation were well reproduced by all schemes,considerable diff erences could still be found among all experiments.A warmer and spatially smaller simulation of YSCWM,with very strong thermocline,appeared in M-Y 2.5 experiment,while a spatially larger YSCWM with shallow mixed layer was found in GLS and KPP schemes.Among all the experiments,the discrepancy,indicated by core temperature,appeared since spring,and grew gradually by the end of November.Additional experiments also confi rmed that the increase of background diff usivity could eff ectively weaken the YSCWM,in either strength or coverage.Surface wave,another contributor in upper layer,was found responsible for the shrinkage of YSCWM coverage.The treatment of wave eff ect as an additional turbulence production term in prognostic equation was shown to be more superior to the strategy of directly increasing diff usivity for a coastal region.
文摘In this paper,we study quadrature squeezings of two Bose-Einstein condensates with collision and non- classical properties of pair entanglement in four wave mixing in Bose-Einstein condensates.With the aid of a numerical method,we find that the two modes(pair entanglement modes)α_1 and α_2 may exhibit quadrature squeezing,in which they are affected by the initial phase.It is shown that the two pump modes exhibit the same super-Poissonian distri- bution.The analysis for the mode-mode correlation shows that there always exists a violation of the Cauchy-Schwartz inequality,which means that correlation between the two pump modes is nonclassical.
基金This work was partly supported by NNSFC,Chinese Academy of Sciences and Director Foundation of the Institute of Chemistry,Academia Sinica
文摘The fully oxidized state of polyaniline (PANI), pernigraniline (PN), was synthesized by oxidation of the emeraldine base form of PAM dissolved in NMP solvent with m-chloroperoxybenzoic acid. The resulted PN was characterized by FTIR and UV-Visible spectra. The third-order nonlinear optical properties of PN in concentrated sulfuric acid (PN/H2SO4) were measured by a degenerated four wave mixing (DFWM) method. The results obtained suggest that the soliton-pair intermediate state associated with the degenerated state does not play a major role in the third order nonlinear optical properties of PANI.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10804115)the National Basic Research Program of China (Grant Nos. 2006CB921202 and 2011CB921504)+1 种基金the Knowledge Innovation Project of Chinese Academy of Sciencesthe Shanghai Committee of Science and Technology,China (Grant No. 09DJ1400700)
文摘We have numerically investigated the biphoton generation rate as a function of several parameters in the sponta- neous four-wave mixing in cold atoms. It has been found that the biphoton generation rate can easily reach saturation with the intensity of the coupling laser increasing. The saturation intensity is mainly dependent on the dephasing rate of the ground states, unrelated to the pumping laser. It implies that though the biphoton waveform can be manipulated by the coupling laser, the generation rate of the biphoton cannot increase markedly after the saturation. The saturation effect also suggests that there is an optimal coupling laser for obtaining the largest biphoton generation rate with a sufficiently long coherence time.
基金the National Natural Science Foundation of China(No.60678043)Beijing Education Committee Common Build Foundation(No.XK100130637).
文摘Wavelength conversion based on four-wave mixing (FWM) has been demonstrated using a 40-m dispersion flattened highly nonlinear photonic crystal fiber (HNL-PCF). A conversion efficiency of -26 dB for a pump power of 19.5 dBm and a conversion bandwidth of 28 nm have been obtained, which are limited by the continuous wave (CW) laser wavelength range and tunability of optical band pass filters (OBPFs).