Tarnavas established mixed weighted power mean inequality in 1999. A separation of weighted power mean inequslity was derived in this paper. As its applications, some separations of other inequalities were given.
With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectiv...With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.展开更多
In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather ar...In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables展开更多
Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study uti...Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China(August 2020),combined with hydrometeorology,elevation,net primary productivity(NPP),and other auxiliary data over the same period.Accordingly,non-stationary characteristics of the spatial scale,and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression(MGWR)model.The results showed that the model was suitable for correlation analysis.The spatial scale of ratio resident-area index(PRI)was the largest,followed by the digital elevation model,NPP,distance from gully,distance from river,average July rainfall,and daily temperature range;whereas the spatial scales of night light,distance from roads,and relative humidity(RH)were the most limited.All influencing factors maintained positive and negative effects on grass yield,save for the strictly negative effect of RH.The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield.Regression parameters revealed that the results of Ordinary least squares(OLS)(Adjusted R^(2)=0.642)and geographically weighted regression(GWR)(Adjusted R^(2)=0.797)models were worse than those of MGWR(Adjusted R^(2)=0.889)models.Based on the results of the RMSE and radius index,the simulation effect also was MGWR>GWR>OLS models.Ultimately,the MGWR model held the strongest prediction performance(R^(2)=0.8306).Spatially,the grass yield was high in the south and west,and low in the north and east of the study area.The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.展开更多
基金Project supported by National Natural Science Foundation of China (Grant No. 10271071)
文摘Tarnavas established mixed weighted power mean inequality in 1999. A separation of weighted power mean inequslity was derived in this paper. As its applications, some separations of other inequalities were given.
基金supported by the National Natural Science Foundation of China(62033008,61873143)。
文摘With the increasing intelligence and integration,a great number of two-valued variables(generally stored in the form of 0 or 1)often exist in large-scale industrial processes.However,these variables cannot be effectively handled by traditional monitoring methods such as linear discriminant analysis(LDA),principal component analysis(PCA)and partial least square(PLS)analysis.Recently,a mixed hidden naive Bayesian model(MHNBM)is developed for the first time to utilize both two-valued and continuous variables for abnormality monitoring.Although the MHNBM is effective,it still has some shortcomings that need to be improved.For the MHNBM,the variables with greater correlation to other variables have greater weights,which can not guarantee greater weights are assigned to the more discriminating variables.In addition,the conditional P(x j|x j′,y=k)probability must be computed based on historical data.When the training data is scarce,the conditional probability between continuous variables tends to be uniformly distributed,which affects the performance of MHNBM.Here a novel feature weighted mixed naive Bayes model(FWMNBM)is developed to overcome the above shortcomings.For the FWMNBM,the variables that are more correlated to the class have greater weights,which makes the more discriminating variables contribute more to the model.At the same time,FWMNBM does not have to calculate the conditional probability between variables,thus it is less restricted by the number of training data samples.Compared with the MHNBM,the FWMNBM has better performance,and its effectiveness is validated through numerical cases of a simulation example and a practical case of the Zhoushan thermal power plant(ZTPP),China.
文摘In this paper, we prove an almost sure central limit theorem for weighted sums of mixing sequences of random variables without stationary assumptions. We no longer restrict to logarithmic averages, but allow rather arbitrary weight sequences. This extends the earlier work on mixing random variables
文摘Spatial models are effective in obtaining local details on grassland biomass,and their accuracy has important practical significance for the stable management of grasses and livestock.To this end,the present study utilized measured quadrat data of grass yield across different regions in the main growing season of temperate grasslands in Ningxia of China(August 2020),combined with hydrometeorology,elevation,net primary productivity(NPP),and other auxiliary data over the same period.Accordingly,non-stationary characteristics of the spatial scale,and the effects of influencing factors on grass yield were analyzed using a mixed geographically weighted regression(MGWR)model.The results showed that the model was suitable for correlation analysis.The spatial scale of ratio resident-area index(PRI)was the largest,followed by the digital elevation model,NPP,distance from gully,distance from river,average July rainfall,and daily temperature range;whereas the spatial scales of night light,distance from roads,and relative humidity(RH)were the most limited.All influencing factors maintained positive and negative effects on grass yield,save for the strictly negative effect of RH.The regression results revealed a multiscale differential spatial response regularity of different influencing factors on grass yield.Regression parameters revealed that the results of Ordinary least squares(OLS)(Adjusted R^(2)=0.642)and geographically weighted regression(GWR)(Adjusted R^(2)=0.797)models were worse than those of MGWR(Adjusted R^(2)=0.889)models.Based on the results of the RMSE and radius index,the simulation effect also was MGWR>GWR>OLS models.Ultimately,the MGWR model held the strongest prediction performance(R^(2)=0.8306).Spatially,the grass yield was high in the south and west,and low in the north and east of the study area.The results of this study provide a new technical support for rapid and accurate estimation of grassland yield to dynamically adjust grazing decision in the semi-arid loess hilly region.