In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering diff...In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering different boil-off gas(BOG) practical treatment processes, a cascade comprehensive utilization scheme of cold energy of LNG based on the longitudinal three-stage organic Rankine cycle power generation and the low-grade cold energy used to frozen seawater desalination was proposed. Through the comparative analysis of the effects of the pure working fluid and eight mixed working fluids on the performance of the new system, the combination scheme of system mixed working fluid with the highest exergy efficiency of the system was determined. Then, the genetic algorithm was used to optimize the parameters of the new system. After optimization, the net output power of the LNG cold energy comprehensive utilization system proposed in this paper was 5186 kW, and the exergy efficiency is 30.6%. Considering the power generation and freshwater revenue, the annual economic benefit of the system operating is 18.71 million CNY.展开更多
基金supported by special project of R&D and industrialization of Marine equipment of national development and reform commission of China(National Development and Reform Commission High Technology[2015]No.1409)。
文摘In this paper, the efficient utilization of liquefied natural gas(LNG) vaporization cold energy in offshore liquefied natural gas floating storage regasification unit(FSRU) is studied. On the basis of considering different boil-off gas(BOG) practical treatment processes, a cascade comprehensive utilization scheme of cold energy of LNG based on the longitudinal three-stage organic Rankine cycle power generation and the low-grade cold energy used to frozen seawater desalination was proposed. Through the comparative analysis of the effects of the pure working fluid and eight mixed working fluids on the performance of the new system, the combination scheme of system mixed working fluid with the highest exergy efficiency of the system was determined. Then, the genetic algorithm was used to optimize the parameters of the new system. After optimization, the net output power of the LNG cold energy comprehensive utilization system proposed in this paper was 5186 kW, and the exergy efficiency is 30.6%. Considering the power generation and freshwater revenue, the annual economic benefit of the system operating is 18.71 million CNY.