Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's f...Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.展开更多
We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only contin...We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.展开更多
In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onproces...In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onprocess synthesis problems. The algorithms are developed for the special case in which the nonlinearitiesarise because of logarithmic terms, with the first one being developed for the deterministic case, and thesecond for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of thefirst-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution tech-niques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, twoprocess synthesis case studies are examined. The corresponding solutions are then validated using state-of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicitfunction of the uncertain parameters.展开更多
Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimiza...Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.展开更多
In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integ...In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.展开更多
Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is develope...Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is developed for the optimal design of refrigeration cycle and heat exchanger network(HEN) simultaneously. Taking the heat integration between the external heat sources/sinks and the refrigeration cycle into consideration, a superstructure with sub-coolers is developed. Through defining logical variables that indicate the relative temperature positions of refrigerant streams after sub-coolers, the synthesis is formulated as a Generalized Disjunctive Programming(GDP) problem based on LP transshipment model, with the target of minimizing the total compressor shaft work in the refrigeration system. The GDP model is then reformulated as a Mixed Integer Nonlinear Programming(MINLP) problem with the aid of binary variables and Big-M Constraint Method. The efficacy of the process synthesis model is demonstrated by a case study of ethylene refrigeration system. The result shows that the optimization can significantly reduce the exergy loss as well as the total compression shaft work.展开更多
Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems a...Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.展开更多
目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合...目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合整数规划模型进行求解,采用一种分段线性化方法,将该非线性模型进行线性化处理。由于所研究问题具有NP-hard属性,无论是CPLEX还是LINGO都无法有效求解大规模算例,因此设计一种有效结合遗传算法与深度、底部、左部方向优先装载(Deepest bottom left with fill,DBLF)的算法。结果大小规模算例实验验证结果表明,混合遗传算法能够在合理时间内获得最优解或近似最优解。结论所提出的可变尺寸包装方案有效提高了装载率,有益于客户和物流公司。展开更多
基金supported by the National Natural Science Fundation of China (60374063)
文摘Two classes of mixed-integer nonlinear bilevel programming problems are discussed. One is that the follower's functions are separable with respect to the follower's variables, and the other is that the follower's functions are convex if the follower's variables are not restricted to integers. A genetic algorithm based on an exponential distribution is proposed for the aforementioned problems. First, for each fixed leader's variable x, it is proved that the optimal solution y of the follower's mixed-integer programming can be obtained by solving associated relaxed problems, and according to the convexity of the functions involved, a simplified branch and bound approach is given to solve the follower's programming for the second class of problems. Furthermore, based on an exponential distribution with a parameter λ, a new crossover operator is designed in which the best individuals are used to generate better offspring of crossover. The simulation results illustrate that the proposed algorithm is efficient and robust.
文摘We propose an exact penalty approach for solving mixed integer nonlinear programming (MINLP) problems by converting a general MINLP problem to a finite sequence of nonlinear programming (NLP) problems with only continuous variables. We express conditions of exactness for MINLP problems and show how the exact penalty approach can be extended to constrained problems.
基金financial support from EPSRC grants (EP/M027856/1 EP/M028240/1)
文摘In the present work, two new, (multi-)parametric programming (mp-P)-inspired algorithms for the solutionof mixed-integer nonlinear programming (MINLP) problems are developed, with their main focus being onprocess synthesis problems. The algorithms are developed for the special case in which the nonlinearitiesarise because of logarithmic terms, with the first one being developed for the deterministic case, and thesecond for the parametric case (p-MINLP). The key idea is to formulate and solve the square system of thefirst-order Karush-Kuhn-Tucker (KKT) conditions in an analytical way, by treating the binary variables and/or uncertain parameters as symbolic parameters. To this effect, symbolic manipulation and solution tech-niques are employed. In order to demonstrate the applicability and validity of the proposed algorithms, twoprocess synthesis case studies are examined. The corresponding solutions are then validated using state-of-the-art numerical MINLP solvers. For p-MINLP, the solution is given by an optimal solution as an explicitfunction of the uncertain parameters.
文摘Filled function method is an approach to find the global minimum of nonlinear functions. Many Problems, such as computing,communication control, and management, in real applications naturally result in global optimization formulations in a form ofnonlinear global integer programming. This paper gives a modified filled function method to solve the nonlinear global integerprogramming problem. The properties of the proposed modified filled function are also discussed in this paper. The results ofpreliminary numerical experiments are also reported.
基金Supported by the National 973 Program of China (No. G2000263).
文摘In this contribution we present an online scheduling algorithm for a real world multiproduct batch plant. The overall mixed integer nonlinear programming (MINLP) problem is hierarchically structured into a mixed integer linear programming (MILP) problem first and then a reduced dimensional MINLP problem, which are optimized by mathematical programming (MP) and genetic algorithm (GA) respectively. The basis idea relies on combining MP with GA to exploit their complementary capacity. The key features of the hierarchical model are explained and illustrated with some real world cases from the multiproduct batch plants.
基金Supported by the National Natural Science Foundation of China(21676183)
文摘Refrigeration system holds an important role in process industries. The optimal synthesis cannot only reduce the energy consumption, but also save the production costs. In this study, a general methodology is developed for the optimal design of refrigeration cycle and heat exchanger network(HEN) simultaneously. Taking the heat integration between the external heat sources/sinks and the refrigeration cycle into consideration, a superstructure with sub-coolers is developed. Through defining logical variables that indicate the relative temperature positions of refrigerant streams after sub-coolers, the synthesis is formulated as a Generalized Disjunctive Programming(GDP) problem based on LP transshipment model, with the target of minimizing the total compressor shaft work in the refrigeration system. The GDP model is then reformulated as a Mixed Integer Nonlinear Programming(MINLP) problem with the aid of binary variables and Big-M Constraint Method. The efficacy of the process synthesis model is demonstrated by a case study of ethylene refrigeration system. The result shows that the optimization can significantly reduce the exergy loss as well as the total compression shaft work.
基金Project supported by the National Natural Science Foundation oChina (Grant os.79970107 and 10271073)
文摘Concave resource allocation problem is an integer programming problem of minimizing a nonincreasing concave function subject to a convex nondecreasing constraint and bounded integer variables. This class of problems are encountered in optimization models involving economies of scale. In this paper, a new hybrid dynamic programming method was proposed for solving concave resource allocation problems. A convex underestimating function was used to approximate the objective function and the resulting convex subproblem was solved with dynamic programming technique after transforming it into a 0-1 linear knapsack problem. To ensure the convergence, monotonicity and domain cut technique was employed to remove certain integer boxes and partition the revised domain into a union of integer boxes. Computational results were given to show the efficiency of the algorithm.
文摘目的针对冷链运输中的生鲜打包及装载优化问题,提出一种允许货物以体积恒定为前提进行尺寸变化的包装装载方案,以最大化集装箱的空间利用率。方法基于上述问题,构建非线性混合整数规划模型,为了方便CPLEX或LINGO等求解器对该非线性混合整数规划模型进行求解,采用一种分段线性化方法,将该非线性模型进行线性化处理。由于所研究问题具有NP-hard属性,无论是CPLEX还是LINGO都无法有效求解大规模算例,因此设计一种有效结合遗传算法与深度、底部、左部方向优先装载(Deepest bottom left with fill,DBLF)的算法。结果大小规模算例实验验证结果表明,混合遗传算法能够在合理时间内获得最优解或近似最优解。结论所提出的可变尺寸包装方案有效提高了装载率,有益于客户和物流公司。