期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Optimized the vanadium electrolyte with sulfate-phosphoric mixed acids to enhance the stable operation at high-temperature
1
作者 Ling Ge Tao Liu +1 位作者 Yimin Zhang Hong Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2024年第2期13-26,共14页
Herein, the influence of the concentration design and comprehensive performance of the sulfate-phosphoric mixed acid system electrolyte is investigated to realize an electrolyte that maintains high energy density and ... Herein, the influence of the concentration design and comprehensive performance of the sulfate-phosphoric mixed acid system electrolyte is investigated to realize an electrolyte that maintains high energy density and stable operation at high temperatures. Static stability tests have shown that VOPO4 precipitation occurs only with vanadium(V) electrolyte. The concentration of vanadium ion of 2.0–2.2 mol·L^(–1), phosphoric acid of 0.10–0.15 mol·L^(–1), and sulfuric acid of 2.5–3.0 mol·L^(–1) are suitable for a vanadium redox flow battery in the temperature range from –20 to 50 ℃. The equations for predicting the viscosity and conductivity of electrolytes are obtained by the response surface method. The optimized electrolyte overcomes precipitation generation. It has 2.8 times higher energy density than the non-phosphate electrolyte, and a coulomb efficiency of 94.0% at 50 ℃. The sulfate-phosphoric mixed acid system electrolyte promotes the electrode reaction process, increases the current density, and reduces the resistance. This work systematically optimizes the concentrations of composition of positive and negative vanadium electrolytes with mixed sulfate-phosphoric acid. It provides a basis for the different valence states and comprehensive properties of sulfate-phosphoric mixed acid system vanadium electrolytes under extreme environments, guiding engineering applications. 展开更多
关键词 all vanadium redox flow battery mixed-acid vanadium electrolyte concentration optimization response surface methodology high-temperature stability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部