Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratch...Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratched and then exposed to the neutral salt spray(NSS) chamber for different time. The microstructure and chemical compositions of the scratches were studied using SEM and EDS. And the non-scratched coated samples were compared. The self-healing mechanism of the composite coatings was discussed. The results show that during corrosion, the self-healing ions in composite coatings dissolve, diffuse and transfer to the scratches or the defects, and then recombine with Zn2+ to form insoluble compound, which deposits and covers the exposed zinc. The corrosion products on the scratches contain silicon, phosphorous, oxygen, chloride and zinc, and they are compact, fine, needle and flake, effectively inhibiting the corrosion formation and expansion of the exposed zinc layer. The composite coatings have good self-healing ability.展开更多
Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found ...Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found that the phosphating coatings are mainly composed of hopeite Zn3Fe(PO4)2.4H2O and phosphophyllite Zn2Fe(PO4)2.4H2O. The microstructural changes of the phosphate coating, as a function of phosphating time, were evaluated by scanning elec- tron microscopy. Four-ball friction experiments reveal that hydroxylamine sulfate instead of sodium nitrite can effectively reduce the friction coefficient of lubricated phosphating coat- ing. Therefore, it may be expected that HAS will be widely used as a fast and ECO-friendly accelerator in phosphate industry.展开更多
To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings ...To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and neutral salt spray (NSS) tests. The results show that after post-sealing the phosphated HDG samples with cerium nitrate solution, the pores among the zinc phosphate crystals are sealed by the compounds containing phosphorus, oxygen and cerium; the zinc phosphate crystals are covered by the flocculent cerium compounds; and the continuous composite coatings are formed on HDG steel. The corrosion resistance of the composite coatings, which increases with the increase in phosphating time and cerium nitrate post-sealing time, is far higher than that of the single phosphate coatings. The composite coatings with the optimal corrosion resistance are obtained for phosphating 300 s and post-sealing 300 s; and the corrosion resistance is more outstanding than that of the chromate coatings.展开更多
The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositi...The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositions of the scratches were investigated using SEM and EDS. The phases of the corrosion products were examined through XRD. The self-healing mechanism of the composite coatings was discussed. The experimental results show that the composite coatings have an excellent corrosion resistance. The corrosion products increase with corrosion time and finally cover the whole scratch. They contain phosphorous, cerium, oxygen, chloride and zinc, and are fine needle and exceedingly compact. The composite coatings are favorable self-healing. During corrosion, the self-healing ions such as Ce3+, Ce4+, PO43-, Zn2+ in the composite coatings were dissolved, migrated, recombined, and covered the exposed zinc, impeding zinc corrosion. The self-healing process of the scratches on the composite coatings can be divided into three stages, about 2 h, 4 h, and 24 h, respectively.展开更多
The phosphated hot-dip galvanized(HDG) sheets were post-sealed with sodium molybdate solution to improve the corrosion resistance of phosphate coatings. The morphology,chemical composition and corrosion resistance of ...The phosphated hot-dip galvanized(HDG) sheets were post-sealed with sodium molybdate solution to improve the corrosion resistance of phosphate coatings. The morphology,chemical composition and corrosion resistance of the coatings were investigated using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),Tafel polarization measurements and neutral salt spray(NSS) tests,and were compared with those of the single coatings. The results show that post-sealing the phosphated HDG steel with molybdate solution,the pores among the zinc phosphate crystals are sealed with molybdate films containing Zn,P,O and Mo,and the continuous composite coatings are formed. The suppression of both the anodic and the cathodic processes of zinc corrosion on the samples are enhanced significantly. The synergistic corrosion protection effect of the single phosphate coatings and molybdate films for zinc is evident. The corrosion resistance of the composite coatings increases with phosphating time up to 300 s.展开更多
The influence of phosphating bath at different temperatures on the formation and corrosion property of calcium-modified zinc phosphate conversion coating (Zn-Ca-P coating) on Mg-Li-Ca alloy was investigated. The mor...The influence of phosphating bath at different temperatures on the formation and corrosion property of calcium-modified zinc phosphate conversion coating (Zn-Ca-P coating) on Mg-Li-Ca alloy was investigated. The morphologies, elemental distribution and chemical structures of the coatings were examined via SEM, EPMA, EDS, XRD and FT-IR. The corrosion resistance was assessed by hydrogen evolution, potentiodynamic polarization and EIS. The results show that the coating is composed of single element Zn and ZnO at below 45 ℃;whereas the coatings are predominantly characterized by Zn3(PO4)2·4H2O and small amount of element zinc and ZnO at above 50 ℃. Mg-Li-Ca alloy with Zn-Ca-P coatings prepared at 55 ℃ has the highest corrosion resistance. However, the hydrogen evolution rates of the coatings obtained at 40-50 ℃ is accelerated due to the galvanic corrosion between the imperfection of the single element Zn coating and the Mg substrate.展开更多
Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coat...Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.展开更多
Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed m...Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed micro-cracks structure and a uniform thickness with the thickness of about2.5μm after20min of phosphating treatment.The composition analyzed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the coating consisted of magnesium phosphate and magnesium hydroxide/oxide compounds.The MPCC showed a significant protective effect on AZ31Mg alloy.The corrosion current of MPCC was reduced to about3%of that of the uncoated surface and the time for the deterioration process during immersion in0.5mol/L NaCl solution improved from about10min to about24h.展开更多
Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge ...Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated.展开更多
A new surface protection process was developed to magnesium alloy against corrosion in aggressive environments.Firstly,a phosphate coating was formed on rinsed magnesium alloy.Then,powder painting was carried out on t...A new surface protection process was developed to magnesium alloy against corrosion in aggressive environments.Firstly,a phosphate coating was formed on rinsed magnesium alloy.Then,powder painting was carried out on the phosphated magnesium alloy.Surface morphologies and phase compositions of the phosphate coating were investigated by X-ray diffraction(XRD) and scanning electron microscope(SEM) .The results show that the phosphate coatings formed in bath containing earth additives at room temperature have dense and fine microstructure.The phosphate coating provides excellent paint adhesion to the magnesium alloy. Salt spray tests indicate that the corrosion resistance of the phosphate coating plus paint could meet the demand of magnesium alloy automobile components in aggressive environments.展开更多
The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with ...The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.展开更多
The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good ...The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good bioactivity, promotes cell viability and cyto-compatibility and exhibits antibacterial activity. However, rapid dissolution in Mg in acidic magnesium phosphate containing solutions leads to the development of an inhomogeneous coating. The present study attempts to prevent the excessive dissolution of Mg by forming a fluoride conversion coating as a pre-treatment in the first stage followed by deposition of magnesium phosphate coating in the second stage to develop magnesium fluoride-magnesium phosphate duplex coatings. The morphological features, structural characteristics, nature of functional groups, corrosion behavior in Hanks’ balanced salt solution and bioactivity in simulated body fluid are assessed to ascertain the suitability of the magnesium fluoride-magnesium phosphate duplex coating in controlling the rate of degradation of Mg and improving its bioactivity using uncoated Mg and fluoride conversion coated Mg as reference. The findings of the study reveal that the magnesium fluoride-magnesium phosphate duplex coating could offer an excellent corrosion resistance and improve the bioactivity of Mg.展开更多
The microstructure, physical and mechanical, and chemical properties of micro-arc calcium phosphate (CAP) coatings deposited under different process voltages in the range of 150-400 V on the commercially pure titani...The microstructure, physical and mechanical, and chemical properties of micro-arc calcium phosphate (CAP) coatings deposited under different process voltages in the range of 150-400 V on the commercially pure titanium (Ti) and Ti-40%Nb (Ti-40Nb) (mass fraction) alloy were investigated by the SEM, TEM, XRD and EDX methods. The coating thickness, roughness, and sizes of structural elements were measured and showed similar linear character depending on the process voltage for the coatings on both substrates. SEM results showed the porous morphology with spherical shape structural elements and rough surface relief of the coatings. XRD and TEM studies exhibited the amorphous structure of the CaP coating. With increasing the process voltage to 300-400 V, the crystalline phases, such as CaHPO4 and β-Ca2P207, were formed onto the coatings. The annealing leads to the formation of complex poly-phase structure with crystalline phases: CaTi4(PO4)6, β-Ca2P2O7, TiP2O7, TiNb(PO4)3, TiO2, NbO2, and Nb2O5. The applied voltage and process duration in the ranges of 200-250 V and 5-10 min, respectively, revealed the coating formed on Ti and Ti-40Nb with optimal properties: thickness of 40-70μm, porosity of 20%-25%, roughness (Ra) of 2.5-5.0 μm, adhesion strength of 15-30 MPa, and Ca/P mole ratio of 0.5-0.7.展开更多
The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosph...The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosphates ( hydroxyapatite ) by high-temperature plasma-spraying or by dip-coating. The biocompatibility was tested in vitro by cultivation of isolated human granulocytes and whole blood cells. As substrates, pure NiTi, plasma-spray-coated NiTi and dip-coated NiTi were used. Isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. Compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased ( p 〈 0.01 ). Whether the d/f- ferences in apoptosis of granulocytes on dip-coated vs plasma-sprayed coatings observed are due to differences in material surface morphologies has to be analyzed in further studies. Because of the cellular interactions with the coating layers, h is likely that the results obtained are not caused by the underlying NiTi but due to the coating itself.展开更多
Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period...Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications.展开更多
The gray phosphate coating was formed on AZ91D magnesium alloy from the zinc phosphating bath containing sodium metanitrobenzene sulphonate in about 4 min. The structure, surface morphologies and phase compositions of...The gray phosphate coating was formed on AZ91D magnesium alloy from the zinc phosphating bath containing sodium metanitrobenzene sulphonate in about 4 min. The structure, surface morphologies and phase compositions of the phosphate coatings were observed and analyzed by using SEM, XRD and EDS. It is shown that the phosphate coating becomes denser and has less micro holes with increasing the concentration of sodium metanitrobenzene sulphonate in the bath in the range of 2.0 to 6.0 g/L. The addition of sodium metanitrobenzene sulphonate greatly increases the micro cathode sites for the formation of the phosphate coating and decreases the porosity of the coating.展开更多
In this study, Mg–6.0Zn–3.0Sn–0.5Mn(ZTM630) magnesium alloy was pre-activated by colloidal Ti, oxalic acid, and phosphoric acid,and a phosphate conversion coating(PCC) was prepared on the alloy surface. The morphol...In this study, Mg–6.0Zn–3.0Sn–0.5Mn(ZTM630) magnesium alloy was pre-activated by colloidal Ti, oxalic acid, and phosphoric acid,and a phosphate conversion coating(PCC) was prepared on the alloy surface. The morphology and corrosion resistance of the prepared PCCs were investigated. Surface morphology studies showed that the phosphate crystals that formed the coating were the smallest for the sample pre-activated by phosphoric acid. The coating on the colloidal Ti and the phosphoric acid samples had the largest and the smallest thickness and surface roughness, respectively. The reason for the discrepancy was analyzed by comparing the surface morphologies of alloy samples immediately after the pre-activation treatment and various phosphating treatments. X-ray diffraction analysis revealed that all three PCCs contained the same compounds. The corrosion resistance time from the copper sulfate drop test and the electrochemical data from the potentiodynamic polarization curves showed that the coating pre-activated by phosphoric acid had the best corrosion resistance. Finally, the 1500 h neutral salt spray corrosion test confirmed that the phosphating treated magnesium alloy, which was pre-activated by phosphoric acid,exhibited excellent corrosion resistance and behavior.展开更多
The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion...The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion resistance of the modified ZPC were investigated by SEM, open circuit potential(OCP), mass gain, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) measurements and compared with those of the traditional ZPC. The results show that if sodium molybdate is added in a traditional zinc phosphate solution, the nucleation of zinc phosphate crystals is increased obviously; zinc phosphate crystals are changed from bulky acicular to fine flake and a more compact ZPC is obtained. Moreover, the mass gain and coverage of the modified ZPC are also boosted. The corrosion resistance of ZPC is increased with an increase in coverage, and thus the corrosion protection ability of the modified ZPC for HDG steel is more outstanding than that of the traditional ZPC.展开更多
Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin AmberliteIR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glyc...Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin AmberliteIR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glycol butylether (DGBE) and phosphorylated with different amounts of phosphoric (H3PO4) acid (1%, 2%, 3% and 5%). Theformation of phosphate polyesters was confirmed by Fourier-transform infrared (FTIR) and 31P nuclearmagnetic resonance (NMR) spectra. Based on the synthesized polyols, polyurethane (PU) coatings were prepared.PU coating based on linseed oil diethylene glycol ester polyol was used as the reference. For the characterizationof coatings, mechanical tests and thermogravimetric analysis (TGA) were used. The flammability parameters ofwood samples with PU coatings at a heat flux of 35 kW/m2 were determined. It was found that PU coatings basedon IPA polyols had higher mechanical characteristics, char residue upon thermal decomposition and flameretardancy.展开更多
Perfluorocarbon emulsion has been studied as an oxygen carrier, due to its high oxygen content. In clinical trials, it has shown stability in delivering oxygen to the target region. The purpose of the present study wa...Perfluorocarbon emulsion has been studied as an oxygen carrier, due to its high oxygen content. In clinical trials, it has shown stability in delivering oxygen to the target region. The purpose of the present study was to increase the stability of the emulsion by coating its surface with calcium phosphate. A layer-by-layer method was employed to coat the flexible emulsion surface. Considering the ionic affinity of calcium and phosphate to the lecithin emulsion surface, the first layer of coating was calcium and the second layer was comprised of phosphate ion. The coated emulsion demonstrated various oxygen release times depending on the thickness of the layers: from 0.04 sec. for a thickness of 8 nm to 0.17 sec. for a thickness 38 nm. Overall, the stability of the calcium phosphate coated emulsion was increased, while its original function as an oxygen carrier was maintained.展开更多
基金Project(2012J05099)supported by the Natural Science Foundation of Fujian Province,ChinaProject(YKJ10021R)supported by the Scientific Research Project of Xiamen University of Technology
文摘Silicate sol post-treatment was applied to form a complete composite coating on the phosphated zinc layer. The chemical compositions of the coatings were investigated using XPS. The coated samples were firstly scratched and then exposed to the neutral salt spray(NSS) chamber for different time. The microstructure and chemical compositions of the scratches were studied using SEM and EDS. And the non-scratched coated samples were compared. The self-healing mechanism of the composite coatings was discussed. The results show that during corrosion, the self-healing ions in composite coatings dissolve, diffuse and transfer to the scratches or the defects, and then recombine with Zn2+ to form insoluble compound, which deposits and covers the exposed zinc. The corrosion products on the scratches contain silicon, phosphorous, oxygen, chloride and zinc, and they are compact, fine, needle and flake, effectively inhibiting the corrosion formation and expansion of the exposed zinc layer. The composite coatings have good self-healing ability.
基金This work was supported by the Bengbu Yucheng New Materials Science and Technology Ltd. (No.2012QTXM0375) and the Natural Science Foundation of Anhui Province (No.1208085QE99).
文摘Hydroxylamine sulfate (HAS) and sodium nitrite are used as the accelerators for zinc phos- phate coating on high carbon steel. Phase evolution of phosphate coating was investigated by X-ray diffraction. It is found that the phosphating coatings are mainly composed of hopeite Zn3Fe(PO4)2.4H2O and phosphophyllite Zn2Fe(PO4)2.4H2O. The microstructural changes of the phosphate coating, as a function of phosphating time, were evaluated by scanning elec- tron microscopy. Four-ball friction experiments reveal that hydroxylamine sulfate instead of sodium nitrite can effectively reduce the friction coefficient of lubricated phosphating coat- ing. Therefore, it may be expected that HAS will be widely used as a fast and ECO-friendly accelerator in phosphate industry.
文摘To improve the corrosion resistance of phosphate coatings, the phosphated hot-dip galvanized (HDG) steel was post-sealed with cerium nitrate solution. The morphology, composition, corrosion resistance of the coatings was investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and neutral salt spray (NSS) tests. The results show that after post-sealing the phosphated HDG samples with cerium nitrate solution, the pores among the zinc phosphate crystals are sealed by the compounds containing phosphorus, oxygen and cerium; the zinc phosphate crystals are covered by the flocculent cerium compounds; and the continuous composite coatings are formed on HDG steel. The corrosion resistance of the composite coatings, which increases with the increase in phosphating time and cerium nitrate post-sealing time, is far higher than that of the single phosphate coatings. The composite coatings with the optimal corrosion resistance are obtained for phosphating 300 s and post-sealing 300 s; and the corrosion resistance is more outstanding than that of the chromate coatings.
基金Funded by the National Natural Science Foundation(No.501408517)the Natural Science Foundation of Fujian Province(No.2012J05099)the Pre-research Project of National Natural Science Fund of Xiamen University of Technology(No.XYK201410)
文摘The phosphated and cerium nitrate post-sealed galvanized steel was firstly scratched to expose zinc layer and then placed in neutral salt spray (NSS) chamber for different durations. The microstructure and compositions of the scratches were investigated using SEM and EDS. The phases of the corrosion products were examined through XRD. The self-healing mechanism of the composite coatings was discussed. The experimental results show that the composite coatings have an excellent corrosion resistance. The corrosion products increase with corrosion time and finally cover the whole scratch. They contain phosphorous, cerium, oxygen, chloride and zinc, and are fine needle and exceedingly compact. The composite coatings are favorable self-healing. During corrosion, the self-healing ions such as Ce3+, Ce4+, PO43-, Zn2+ in the composite coatings were dissolved, migrated, recombined, and covered the exposed zinc, impeding zinc corrosion. The self-healing process of the scratches on the composite coatings can be divided into three stages, about 2 h, 4 h, and 24 h, respectively.
基金Project(07BS405) supported by the Excellent Talents Foundation of Huaqiao Univeristy, China
文摘The phosphated hot-dip galvanized(HDG) sheets were post-sealed with sodium molybdate solution to improve the corrosion resistance of phosphate coatings. The morphology,chemical composition and corrosion resistance of the coatings were investigated using scanning electron microscopy(SEM),energy dispersive spectroscopy(EDS),Tafel polarization measurements and neutral salt spray(NSS) tests,and were compared with those of the single coatings. The results show that post-sealing the phosphated HDG steel with molybdate solution,the pores among the zinc phosphate crystals are sealed with molybdate films containing Zn,P,O and Mo,and the continuous composite coatings are formed. The suppression of both the anodic and the cathodic processes of zinc corrosion on the samples are enhanced significantly. The synergistic corrosion protection effect of the single phosphate coatings and molybdate films for zinc is evident. The corrosion resistance of the composite coatings increases with phosphating time up to 300 s.
基金Project(51241001)supported by the National Natural Science Foundation of ChinaProject(ZR2011EMM004)supported by the Natural Science Foundation of Shandong Province,China+1 种基金Project(SKLCP21012KF03)supported by the Open Foundation of State Key Laboratory for Corrosion and Protection,ChinaProject(TS20110828)supported by Taishan Scholarship Project of Shandong Province,China
文摘The influence of phosphating bath at different temperatures on the formation and corrosion property of calcium-modified zinc phosphate conversion coating (Zn-Ca-P coating) on Mg-Li-Ca alloy was investigated. The morphologies, elemental distribution and chemical structures of the coatings were examined via SEM, EPMA, EDS, XRD and FT-IR. The corrosion resistance was assessed by hydrogen evolution, potentiodynamic polarization and EIS. The results show that the coating is composed of single element Zn and ZnO at below 45 ℃;whereas the coatings are predominantly characterized by Zn3(PO4)2·4H2O and small amount of element zinc and ZnO at above 50 ℃. Mg-Li-Ca alloy with Zn-Ca-P coatings prepared at 55 ℃ has the highest corrosion resistance. However, the hydrogen evolution rates of the coatings obtained at 40-50 ℃ is accelerated due to the galvanic corrosion between the imperfection of the single element Zn coating and the Mg substrate.
基金Project(51571134)supported by the National Natural Science Foundation of ChinaProject(2014TDJH104)supported by the SDUST Research Fund+1 种基金the Joint Innovative Centre for Safe and Effective Mining Technology and Equipment of Coal Resources,Shandong Province,ChinaProject(cstc2012jj A50034)supported by the Natural Science Foundation of Chongqing,China
文摘Zinc calcium phosphate (Zn-Ca-P) coating and cerium-doped zinc calcium phosphate (Zn-Ca-Ce-P) coating were prepared on AZ31 magnesium alloy. The chemical compositions, morphologies and corrosion resistance of coatings were investigated through energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electron probe micro-analysis (EPMA) and scanning electron microscopy (SEM) together with hydrogen volumetric and electrochemical tests. The results indicate that both coatings predominately contain crystalline hopeite (Zn3(PO4)2·4H2O), Mg3(PO4)2 and Ca3(PO4)2, and traces of non-crystalline MgF2 and CaF2. The Zn-Ca-Ce-P coating is more compact than the Zn-Ca-P coating due to the formation of CePO4, and displays better corrosion resistance than the Zn-Ca-P coating. Both coatings protect the AZ31 Mg substrate only during an initial immersion period. The micro-galvanic corrosion between the coatings and their substrates leads to an increase of hydrogen evolution rate (HER) with extending the immersion time. The addition of Ce promotes the homogenous distribution of Ca and formation of hopeite. The Zn-Ca-Ce-P coating has the potential for the primer coating on magnesium alloys.
基金supported by a research grant from Korea Institute of Materials Science (PNK4652)
文摘Magnesium phosphate conversion coating(MPCC)was fabricated on AZ31magnesium alloy for corrosion protection by immersion treatment in a simple MPCC solution containing Mg2+and3PO4?ions.The MPCC on AZ31Mg alloy showed micro-cracks structure and a uniform thickness with the thickness of about2.5μm after20min of phosphating treatment.The composition analyzed by energy dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy revealed that the coating consisted of magnesium phosphate and magnesium hydroxide/oxide compounds.The MPCC showed a significant protective effect on AZ31Mg alloy.The corrosion current of MPCC was reduced to about3%of that of the uncoated surface and the time for the deterioration process during immersion in0.5mol/L NaCl solution improved from about10min to about24h.
基金Uchchatar Avishkar Yojna(UAY)(Phase II)project(codeIITBBS_004)Prime M inister’s Research Fellows(PMRF)。
文摘Magnesium(Mg)and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio,making them suitable for many industries,including aerospace,automobile,and medical.The major challenge is their high susceptibility to corrosion,thereby limiting their usability.The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling.The oxide layer on Mg offers little corrosion resistance because of its high porosity,inhomogeneity,and fragility.Chemical conversion coatings(CCs)belong to a distinct class because of underlying chemical reactions,which are fundamentally different from other types of coating.Typically,a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint.Although chromate CCs offer superior performance compared to phosphate CCs,yet still they release carcinogenic hexavalent chromium ions(Cr^(6+));therefore,their use is prohibited in most European nations under the Registration,Evaluation,Authorization and Restriction of Chemicals legislation framework.Phosphate-based CCs are a cost-effective and environment-friendly alternative.Accordingly,this review primarily focuses on different types of phosphate-based CCs,such as zinc,calcium,Mg,vanadium,manganese,and permanganate.It discusses their mechanisms,current status,pretreatment practices,and the influence of various parameters-such as pH,temperature,immersion time,and bath composition-on the coating performance.Some challenges associated with phosphate CCs and future research directions are also elaborated.
基金Projects(Y20090108,G20080115)supported by Education Department of Zhejiang and Technology Department of Wenzhou,China
文摘A new surface protection process was developed to magnesium alloy against corrosion in aggressive environments.Firstly,a phosphate coating was formed on rinsed magnesium alloy.Then,powder painting was carried out on the phosphated magnesium alloy.Surface morphologies and phase compositions of the phosphate coating were investigated by X-ray diffraction(XRD) and scanning electron microscope(SEM) .The results show that the phosphate coatings formed in bath containing earth additives at room temperature have dense and fine microstructure.The phosphate coating provides excellent paint adhesion to the magnesium alloy. Salt spray tests indicate that the corrosion resistance of the phosphate coating plus paint could meet the demand of magnesium alloy automobile components in aggressive environments.
文摘The influences of pH value, electrolyte temperature and loading time on depositing calcium phosphate coating on pure titanium substrate by electrodeposition process were investigated. The process was carried out with an electrochemical work-station supplying a direct current power at potential of -0.8V (vs SCE). The electrolyte consists of 7 mmol·L-1 CaCl2·2H2O, 3 mmol·L-1 Ca(H2PO4)2·H2O and 2.5% H2O2. NaOH and HCl solutions were used to adjust pH value. The deposited samples were characterized by X-ray diffraction and scanning electron microscope. The comparison of the deposits obtained at lower and higher pH values demonstrates that the crystallization process at the interface is favoured by high pH value. With temperature increasing, the deposited hydroxyapatite is occasionally of plate-like shape, and the width and the length of the deposited calcium phosphates at 65 ℃ are larger than those at 55 ℃. Therefore, it is confirmed that the morphology and microstructure of electrochemically deposited calcium phosphates can be regulated. Additionally, the coating formed in electrolyte with H2O2 additive is homogeneous and the evolution of H2 bubble can be eliminated.
基金University Grand Commission(UGC)for providing a research fellowship to support this research program under the non-net category。
文摘The thin and porous Fluoride Conversion Coating FCC with many cracks could not offer a significant improvement in corrosion resistance for Mg. Magnesium phosphate coating improves the corrosion resistance of Mg, good bioactivity, promotes cell viability and cyto-compatibility and exhibits antibacterial activity. However, rapid dissolution in Mg in acidic magnesium phosphate containing solutions leads to the development of an inhomogeneous coating. The present study attempts to prevent the excessive dissolution of Mg by forming a fluoride conversion coating as a pre-treatment in the first stage followed by deposition of magnesium phosphate coating in the second stage to develop magnesium fluoride-magnesium phosphate duplex coatings. The morphological features, structural characteristics, nature of functional groups, corrosion behavior in Hanks’ balanced salt solution and bioactivity in simulated body fluid are assessed to ascertain the suitability of the magnesium fluoride-magnesium phosphate duplex coating in controlling the rate of degradation of Mg and improving its bioactivity using uncoated Mg and fluoride conversion coated Mg as reference. The findings of the study reveal that the magnesium fluoride-magnesium phosphate duplex coating could offer an excellent corrosion resistance and improve the bioactivity of Mg.
基金Project(III.23.2.5)supported by the Fundamental Research Program of the Siberian Branch of Russian Academy of SciencesProject(15-03-07659)supported by the Russian Foundation for Basic Research+1 种基金Project(CR16-22)supported by the China and Russia on the Implementation of Inter-governmental ScientificTechnological Cooperation Projects of the Notice(NSC foreign word[2012]No.269)
文摘The microstructure, physical and mechanical, and chemical properties of micro-arc calcium phosphate (CAP) coatings deposited under different process voltages in the range of 150-400 V on the commercially pure titanium (Ti) and Ti-40%Nb (Ti-40Nb) (mass fraction) alloy were investigated by the SEM, TEM, XRD and EDX methods. The coating thickness, roughness, and sizes of structural elements were measured and showed similar linear character depending on the process voltage for the coatings on both substrates. SEM results showed the porous morphology with spherical shape structural elements and rough surface relief of the coatings. XRD and TEM studies exhibited the amorphous structure of the CaP coating. With increasing the process voltage to 300-400 V, the crystalline phases, such as CaHPO4 and β-Ca2P207, were formed onto the coatings. The annealing leads to the formation of complex poly-phase structure with crystalline phases: CaTi4(PO4)6, β-Ca2P2O7, TiP2O7, TiNb(PO4)3, TiO2, NbO2, and Nb2O5. The applied voltage and process duration in the ranges of 200-250 V and 5-10 min, respectively, revealed the coating formed on Ti and Ti-40Nb with optimal properties: thickness of 40-70μm, porosity of 20%-25%, roughness (Ra) of 2.5-5.0 μm, adhesion strength of 15-30 MPa, and Ca/P mole ratio of 0.5-0.7.
文摘The influence of different surface coatings of NiTi shape memory allays was examined using in vitro testing methods. Plates of superelastic nickel-titanium shape memory allay ( NiTi ) were coated with calcium phosphates ( hydroxyapatite ) by high-temperature plasma-spraying or by dip-coating. The biocompatibility was tested in vitro by cultivation of isolated human granulocytes and whole blood cells. As substrates, pure NiTi, plasma-spray-coated NiTi and dip-coated NiTi were used. Isolated granulocytes showed an increased adhesion to both calcium phosphate-coated NiTi samples. Compared to non-coated NiTi or dip-coated NiTi, the number of dead granulocytes adherent to plasma-sprayed surfaces was significantly increased ( p 〈 0.01 ). Whether the d/f- ferences in apoptosis of granulocytes on dip-coated vs plasma-sprayed coatings observed are due to differences in material surface morphologies has to be analyzed in further studies. Because of the cellular interactions with the coating layers, h is likely that the results obtained are not caused by the underlying NiTi but due to the coating itself.
文摘Globally,vast research interest is emerging towards the development of biodegradable orthopedic implants as it overcomes the toxicity exerted by non-degradable implants when fixed in the human body for a longer period.In this context,magnesium(Mg)plays a major role in the production of biodegradable implants owing to their characteristic degradation nature under the influence of body fluids.Also,Mg is one of the essential nutrients required to perform various metabolic activities by the human cells,and therefore,the degraded Mg products will be readily absorbed by the nearby tissues.Nevertheless,the higher corrosion rate in the biological environment is the primary downside of using Mg implants that liberate H2gas resulting in the formation of cavities.Further,in certain cases,Mg undergoes complete degradation before the healing of damaged bone tissue and cannot serve the purpose of providing mechanical support.So,many studies have been focused on the development of different strategies to improve the corrosion-resistant behavior of Mg according to the requirement.In this regard,the present review focused on the limitations of using pure Mg and Mg alloys for the fabrication of medical implants and how the calcium phosphate conversion coating alters the corrosive tendency through the formation of hydroxyapatite protective films for enhanced performance in medical implant applications.
基金Project(2004CB619301) supported by the National Basic Research and Development Program and Project 985-Automotive Engineering of Jilin University
文摘The gray phosphate coating was formed on AZ91D magnesium alloy from the zinc phosphating bath containing sodium metanitrobenzene sulphonate in about 4 min. The structure, surface morphologies and phase compositions of the phosphate coatings were observed and analyzed by using SEM, XRD and EDS. It is shown that the phosphate coating becomes denser and has less micro holes with increasing the concentration of sodium metanitrobenzene sulphonate in the bath in the range of 2.0 to 6.0 g/L. The addition of sodium metanitrobenzene sulphonate greatly increases the micro cathode sites for the formation of the phosphate coating and decreases the porosity of the coating.
基金financially supported by National Key Research and Development Program of China (Nos. 2017YFB0103904, 2016YFB0301105)National Natural Science Foundation of China (No. 51804190)+2 种基金Youth Science Funds of Shandong Academy of Sciences (No. 2020QN0022)Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities (No. 2020KJA002)Jinan Science & Technology Bureau (No. 2019GXRC030)。
文摘In this study, Mg–6.0Zn–3.0Sn–0.5Mn(ZTM630) magnesium alloy was pre-activated by colloidal Ti, oxalic acid, and phosphoric acid,and a phosphate conversion coating(PCC) was prepared on the alloy surface. The morphology and corrosion resistance of the prepared PCCs were investigated. Surface morphology studies showed that the phosphate crystals that formed the coating were the smallest for the sample pre-activated by phosphoric acid. The coating on the colloidal Ti and the phosphoric acid samples had the largest and the smallest thickness and surface roughness, respectively. The reason for the discrepancy was analyzed by comparing the surface morphologies of alloy samples immediately after the pre-activation treatment and various phosphating treatments. X-ray diffraction analysis revealed that all three PCCs contained the same compounds. The corrosion resistance time from the copper sulfate drop test and the electrochemical data from the potentiodynamic polarization curves showed that the coating pre-activated by phosphoric acid had the best corrosion resistance. Finally, the 1500 h neutral salt spray corrosion test confirmed that the phosphating treated magnesium alloy, which was pre-activated by phosphoric acid,exhibited excellent corrosion resistance and behavior.
文摘The modified zinc phosphate conversion coatings(ZPC) were formed on hot-dip galvanized(HDG) steel when 1.0 g/L sodium molybdate were added in a traditional zinc phosphate solution. The growth performance and corrosion resistance of the modified ZPC were investigated by SEM, open circuit potential(OCP), mass gain, potentiodynamic polarization and electrochemical impedance spectroscopy(EIS) measurements and compared with those of the traditional ZPC. The results show that if sodium molybdate is added in a traditional zinc phosphate solution, the nucleation of zinc phosphate crystals is increased obviously; zinc phosphate crystals are changed from bulky acicular to fine flake and a more compact ZPC is obtained. Moreover, the mass gain and coverage of the modified ZPC are also boosted. The corrosion resistance of ZPC is increased with an increase in coverage, and thus the corrosion protection ability of the modified ZPC for HDG steel is more outstanding than that of the traditional ZPC.
文摘Linseed oil was epoxidized using hydrogen peroxide (H2O2), acetic acid (AcOH) and ion exchange resin AmberliteIR-120 as a catalyst. Epoxidized oil was separately dissolved in isopropyl alcohol (IPA) or diethylene glycol butylether (DGBE) and phosphorylated with different amounts of phosphoric (H3PO4) acid (1%, 2%, 3% and 5%). Theformation of phosphate polyesters was confirmed by Fourier-transform infrared (FTIR) and 31P nuclearmagnetic resonance (NMR) spectra. Based on the synthesized polyols, polyurethane (PU) coatings were prepared.PU coating based on linseed oil diethylene glycol ester polyol was used as the reference. For the characterizationof coatings, mechanical tests and thermogravimetric analysis (TGA) were used. The flammability parameters ofwood samples with PU coatings at a heat flux of 35 kW/m2 were determined. It was found that PU coatings basedon IPA polyols had higher mechanical characteristics, char residue upon thermal decomposition and flameretardancy.
文摘Perfluorocarbon emulsion has been studied as an oxygen carrier, due to its high oxygen content. In clinical trials, it has shown stability in delivering oxygen to the target region. The purpose of the present study was to increase the stability of the emulsion by coating its surface with calcium phosphate. A layer-by-layer method was employed to coat the flexible emulsion surface. Considering the ionic affinity of calcium and phosphate to the lecithin emulsion surface, the first layer of coating was calcium and the second layer was comprised of phosphate ion. The coated emulsion demonstrated various oxygen release times depending on the thickness of the layers: from 0.04 sec. for a thickness of 8 nm to 0.17 sec. for a thickness 38 nm. Overall, the stability of the calcium phosphate coated emulsion was increased, while its original function as an oxygen carrier was maintained.