As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing ...As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.展开更多
Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In ...Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.展开更多
In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. T...In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).展开更多
A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematica...A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematical model for two-ALB problem was suggested. A modification of the “ranked positional weight” method, namely two-ALB RPW for two-ALB problems was developed. Experiments were carried out to verify the performance of the proposed method and the results show that it is effective in solving two-sided assembly line balancing problems.展开更多
Multi-manned assembly line,which is broadly utilized to assemble high volume products such as automobiles and trucks,allows a group of workers to assemble different tasks simultaneously in a multi-manned workstation.T...Multi-manned assembly line,which is broadly utilized to assemble high volume products such as automobiles and trucks,allows a group of workers to assemble different tasks simultaneously in a multi-manned workstation.This additional characteristic of parallel operators increases the complexity of the traditional NP-hard assembly line balancing problem.Hence,this paper formulates the Type-I multi-manned assembly line balancing problem to minimize the total number of workstations and operators,and develops an efficient migrating birds optimization algorithm embedded into an idle time reduction method.In this algorithm,a new decoding mechanism is proposed which reduces the sequence-dependent idle time by some task assignment rules;three effective neighborhoods are developed to make refinement of existing solutions in the bird improvement phases;and temperature acceptance and competitive mechanism are employed to avoid being trapped in the local optimum.Comparison experiments suggest that the new decoding and improvements are effective and the proposed algorithm outperforms the compared algorithms.展开更多
Shuffled frog leaping algorithm( SFLA) was used to solve multi-objective sequencing problem of mixed model assembly line( MMAL). Local convergence can be avoided and optimal solution can be obtained to a certain exten...Shuffled frog leaping algorithm( SFLA) was used to solve multi-objective sequencing problem of mixed model assembly line( MMAL). Local convergence can be avoided and optimal solution can be obtained to a certain extent. However,the multi-objective sequencing problem of MMAL is an non-deterministic polynomial hard( NP-hard) problem and the shortcomings are slow convergence rate and low precision. To solve the shortcomings for optimization objectives of minimizing total utility time and keeping average consumption rate of parts, a chaos differential evolution SFLA( CDESFLA) is proposed in this study. Because SFLA is easy to fall into local optimum,the evolution operator of differential evolution algorithms is introduced in SFLA as a local search strategy,and differential mutation operator is introduced in chaotic sequence to prevent premature convergence. The examples show that the proposed CDESFLA is better for convergence accuracy than SFLA,genetic algorithm( GA) and particle swarm optimization( PSO)展开更多
The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem a...The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.展开更多
The successful implementation of mass customization lies on reengineeringtechnology and management methods to organize the production. Especially in assembly phase, variousproduct configurations, due-time penalties an...The successful implementation of mass customization lies on reengineeringtechnology and management methods to organize the production. Especially in assembly phase, variousproduct configurations, due-time penalties and order-driven strategy challenge the traditionaloperation and management of assembly lines. The business features and the operation pattern ofassembly line based on mass customization are analyzed. And the research emphatically studiesvarious technologic factors to improve customer satisfaction and their corresponding implementmethods in operating assembly line. In addition, the models are proposed for operating assembly lineunder dynamic process environment in mass customization. A genetic approach is developed to providethe optimal solution to the models. The effectiveness of the proposed approach is evaluated with anindustrial application.展开更多
Aiming at assembly line balancing problem,a double chromosome genetic algorithm(DCGA)is proposed to avoid trapping in local optimum,which is a disadvantage of standard genetic algorithm(SGA).In this algorithm,there ar...Aiming at assembly line balancing problem,a double chromosome genetic algorithm(DCGA)is proposed to avoid trapping in local optimum,which is a disadvantage of standard genetic algorithm(SGA).In this algorithm,there are two chromosomes of each individual,and the better one,regarded as dominant chromosome,determines the fitness.Dominant chromosome keeps excellent gene segments to speed up the convergence,and recessive chromosome maintains population diversity to get better global search ability to avoid local optimal solution.When the amounts of chromosomes are equal,the population size of DCGA is half that of SGA,which significantly reduces evolutionary time.Finally,the effectiveness is verified by experiments.展开更多
A modularized, network, reconfigurable architecture and design method of embedded control module is proposed. This control module uses a TMS320F2812 chip as the core, and intro- duces modularization, network, reconfig...A modularized, network, reconfigurable architecture and design method of embedded control module is proposed. This control module uses a TMS320F2812 chip as the core, and intro- duces modularization, network, reconfigurable theory to the design of control module to better meet the flexible and reconfigurable control need of assembly line. The design method of the control module is verified by constructing a control experiment based on controlling of precision x - y displace- ment platform through a CAN bus. Experimental results show that the controlling repeat position accuracy of precision x - y platform by control module is 0. 5 μm and the position error is less than 1μm which meet the needs of micro-adjustment pose of assembly line.展开更多
The health check up flow of digital hospital can be consulted with the assem bly line of industry factory.Because they have the following same features:highly specialized workstation, closeness and continuance,rhyth...The health check up flow of digital hospital can be consulted with the assem bly line of industry factory.Because they have the following same features:highly specialized workstation, closeness and continuance,rhythm,balanced production,continuous production.The essential prerequisites are as the follows:The inspecting item s and methods should be stable;advanced product mix and stable production design;standardized raw m aterial,consumption,procedure, inspection method;there are lots of request for health inspection;the customers move at the least unit;the space arrangement should be reasonable;the time arrangement should be proportion. With the com puter net,the digital inspection can achieves the raw material controlling accurately. The basis of check up line concerns about equipm ent,net and software,data collection,and per- sonnel.The group technology is used in the health inspection flow design of the digital hospital in the field of items custom ers and zone redivided.The digital assembly linem ic health inspect has the following stages:m ember registering,notice,check in,arrange order,tim e control,report,feed- back and analysis. The assem bly linemic has following advantages:increasing the productivity, the space utility,satisfaction of customer,fund returning,lowering the cost and ensuring the quality.展开更多
The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft ...The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft assembly.In this paper,a novel approach of hole position correction using laser line scanner(LLS)is proposed to assign a single row of holes on the parts’surfaces.First,we adopt a space circle fitting method and the random sample consensus(RANSAC)to obtain the precise coordinates of center of the datum holes’coordinates.Second,LLS is calibrated by the laser tracker,and the relations between the LLS coordinate system and the tool coordinate system(TCS)can be calculated.Third,the kinematics model of the automatic riveting machine is established based on a two-point referencing strategy proposed in this paper.Thus,the positions of the holes to be drilled can be adjusted.Finally,the experimental results show that in TCS the measurement error of LLS is less than 0.1 mm,and the correction error of the hole position is less than 0.5 mm,which demonstrates the reliability of our method.展开更多
A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and ...A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and mutation, the globaloptimal result can be obtained. Fitness function wasrepresented by smoothness Index ( SI ). Thesimulation shows that the method proposed in thispaper is better than the conventional way and theoptimized solution can be got in this way.展开更多
Numerous clothing enterprises in the market have a relatively low efficiency of assembly line planning due to insufficient optimization of bottleneck stations.As a result,the production efficiency of the enterprise is...Numerous clothing enterprises in the market have a relatively low efficiency of assembly line planning due to insufficient optimization of bottleneck stations.As a result,the production efficiency of the enterprise is not high,and the production organization is not up to expectations.Aiming at the problem of flexible process route planning in garment workshops,a multi-object genetic algorithm is proposed to solve the assembly line bal-ance optimization problem and minimize the machine adjustment path.The encoding method adopts the object-oriented path representation method,and the initial population is generated by random topology sorting based on an in-degree selection mechanism.The multi-object genetic algorithm improves the mutation and crossover operations according to the characteristics of the clothing process to avoid the generation of invalid offspring.In the iterative process,the bottleneck station is optimized by reasonable process splitting,and process allocation conforms to the strict limit of the station on the number of machines in order to improve the compilation efficiency.The effectiveness and feasibility of the multi-object genetic algorithm are proven by the analysis of clothing cases.Compared with the artificial allocation process,the compilation efficiency of MOGA is increased by more than 15%and completes the optimization of the minimum machine adjustment path.The results are in line with the expected optimization effect.展开更多
Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to...Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design.展开更多
A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For ...A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.展开更多
Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This p...Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU time than CNSGA II, its other performances are dominated.展开更多
This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines ...This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.展开更多
The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancin...The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancing efficiency is maximized. If the organization assembles more than one model in the same line, then the objective is to maximize the average balancing efficiency of the models of the mixed model assembly line balancing problem. Maximization of average balancing efficiency of the models along with minimization of makespan of sequencing models forms a multi-objective function. This is a realistic objective function which combines the balancing efficiency and makespan. This assembly line balancing problem with multi-objective comes under combinatorial category. Hence, development of meta-heuristic is inevitable. In this paper, an attempt has been made to develop three genetic algorithms for the mixed model assembly line balancing problem such that the average balancing efficiency of the model is maximized and the makespan of sequencing the models is minimized. Finally, these three algorithms and another algorithm in literature modified to solve the mixed-model assembly line balancing problem are compared in terms of the stated multi-objective function using a randomly generated set of problems through a complete factorial experiment.展开更多
Quality control is an important part of the capacitors automatic assembly process. Traditionally this control is being realized through a series of electrical measurements including capacity, tension, and tgct. In mos...Quality control is an important part of the capacitors automatic assembly process. Traditionally this control is being realized through a series of electrical measurements including capacity, tension, and tgct. In most cases, these measurements are not suitable for detecting defects that appear as a result of failures of certain elements of the assembly lines. These so called self-recovering failures very often remain unnoticed, because they do not cause a suspension of the assembly process and if not taken into consideration, they can seriously menace the final product quality. In this paper, the authors use PFMEA to identify and evaluate the risk of the self-recovering failures. They also propose a simple Simulink model, which could be useful when trying to estimate the effect of installing new control devices at an existing assembly line upon its overall reliability and productivity.展开更多
基金supported by China National Heavy Duty Truck Group Co.,Ltd.(Grant No.YF03221048P)the Shanghai Municipal Bureau of Market Supervision and Administration(Grant No.2022-35)New Young TeachersResearch Start-Up Foundation of Shanghai Jiao Tong University(Grant No.22X010503668).
文摘As the take-off of China’s macro economy,as well as the rapid development of infrastructure construction,real estate industry,and highway logistics transportation industry,the demand for heavy vehicles is increasing rapidly,the competition is becoming increasingly fierce,and the digital transformation of the production line is imminent.As one of themost important components of heavy vehicles,the transmission front andmiddle case assembly lines have a high degree of automation,which can be used as a pilot for the digital transformation of production.To ensure the visualization of digital twins(DT),consistent control logic,and real-time data interaction,this paper proposes an experimental digital twin modeling method for the transmission front and middle case assembly line.Firstly,theDT-based systemarchitecture is designed,and theDT model is created by constructing the visualization model,logic model,and data model of the assembly line.Then,a simulation experiment is carried out in a virtual space to analyze the existing problems in the current assembly line.Eventually,some improvement strategies are proposed and the effectiveness is verified by a new simulation experiment.
基金Supported by National Natural Science Foundation of China(Grant Nos.51275366,50875190,51305311)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20134219110002)
文摘Due to the NP-hardness of the two-sided assembly line balancing (TALB) problem, multiple constraints existing in real applications are less studied, especially when one task is involved with several constraints. In this paper, an effective hybrid algorithm is proposed to address the TALB problem with multiple constraints (TALB-MC). Considering the discrete attribute of TALB-MC and the continuous attribute of the standard teaching-learning-based optimization (TLBO) algorithm, the random-keys method is hired in task permutation representation, for the purpose of bridging the gap between them. Subsequently, a special mechanism for handling multiple constraints is developed. In the mechanism, the directions constraint of each task is ensured by the direction check and adjustment. The zoning constraints and the synchronism constraints are satisfied by teasing out the hidden correlations among constraints. The positional constraint is allowed to be violated to some extent in decoding and punished in cost fimction. Finally, with the TLBO seeking for the global optimum, the variable neighborhood search (VNS) is further hybridized to extend the local search space. The experimental results show that the proposed hybrid algorithm outperforms the late acceptance hill-climbing algorithm (LAHC) for TALB-MC in most cases, especially for large-size problems with multiple constraints, and demonstrates well balance between the exploration and the exploitation. This research proposes an effective and efficient algorithm for solving TALB-MC problem by hybridizing the TLBO and VNS.
基金support and help of many individuals in the SASTRA University
文摘In a manufacturing industry, mixed model assembly line(MMAL) is preferred in order to meet the variety in product demand. MMAL balancing helps in assembling products with similar characteristics in a random fashion. The objective of this work aims in reducing the number of workstations, work load index between stations and within each station. As manual contribution of workers in final assembly line is more, ergonomics is taken as an additional objective function. Ergonomic risk level of a workstation is evaluated using a parameter called accumulated risk posture(ARP), which is calculated using rapid upper limb assessment(RULA) check sheet. This work is based on the case study of an MMAL problem in Rane(Madras) Ltd.(India), in which a problem based genetic algorithm(GA) has been proposed to minimize the mentioned objectives. The working of the genetic operators such as selection, crossover and mutation has been modified with respect to the addressed MMAL problem. The results show that there is a significant impact over productivity and the process time of the final assembled product, i.e., the rate of production is increased by 39.5% and the assembly time for one particular model is reduced to 13 min from existing 18 min. Also, the space required using the proposed assembly line is only 200 m2 against existing 350 m2. Further, the algorithm helps in reducing workers fatigue(i.e., ergonomic friendly).
基金Key Projectof Scientific and TechnologicalCommittee of Shanghai(No.0 3 11110 0 5 )
文摘A two-sided assembly line is typically found in plants producing large-sized products. Its advantages over a one-sided line and the difficulties faced in two-sided line balancing problems were discussed. A mathematical model for two-ALB problem was suggested. A modification of the “ranked positional weight” method, namely two-ALB RPW for two-ALB problems was developed. Experiments were carried out to verify the performance of the proposed method and the results show that it is effective in solving two-sided assembly line balancing problems.
基金supported by the National Natural Science Foundation of China(51875421,61803287).
文摘Multi-manned assembly line,which is broadly utilized to assemble high volume products such as automobiles and trucks,allows a group of workers to assemble different tasks simultaneously in a multi-manned workstation.This additional characteristic of parallel operators increases the complexity of the traditional NP-hard assembly line balancing problem.Hence,this paper formulates the Type-I multi-manned assembly line balancing problem to minimize the total number of workstations and operators,and develops an efficient migrating birds optimization algorithm embedded into an idle time reduction method.In this algorithm,a new decoding mechanism is proposed which reduces the sequence-dependent idle time by some task assignment rules;three effective neighborhoods are developed to make refinement of existing solutions in the bird improvement phases;and temperature acceptance and competitive mechanism are employed to avoid being trapped in the local optimum.Comparison experiments suggest that the new decoding and improvements are effective and the proposed algorithm outperforms the compared algorithms.
基金National Natural Science Foundation of China(o.61370037)
文摘Shuffled frog leaping algorithm( SFLA) was used to solve multi-objective sequencing problem of mixed model assembly line( MMAL). Local convergence can be avoided and optimal solution can be obtained to a certain extent. However,the multi-objective sequencing problem of MMAL is an non-deterministic polynomial hard( NP-hard) problem and the shortcomings are slow convergence rate and low precision. To solve the shortcomings for optimization objectives of minimizing total utility time and keeping average consumption rate of parts, a chaos differential evolution SFLA( CDESFLA) is proposed in this study. Because SFLA is easy to fall into local optimum,the evolution operator of differential evolution algorithms is introduced in SFLA as a local search strategy,and differential mutation operator is introduced in chaotic sequence to prevent premature convergence. The examples show that the proposed CDESFLA is better for convergence accuracy than SFLA,genetic algorithm( GA) and particle swarm optimization( PSO)
文摘The growing global competition compels manufacturing organizations to engage themselves in all productivity improvement activities. In this direction, the consideration of mixed-model assembly line balancing problem and implementing in industries plays a major role in improving organizational productivity. In this paper, the mixed model assembly line balancing problem with deterministic task times is considered. The authors made an attempt to develop a genetic algorithm for realistic design of the mixed-model assembly line balancing problem. The design is made using the originnal task times of the models, which is a realistic approach. Then, it is compared with the generally perceived design of the mixed-model assembly line balancing problem.
基金National Natural Science Foundation of China (No.59889505)
文摘The successful implementation of mass customization lies on reengineeringtechnology and management methods to organize the production. Especially in assembly phase, variousproduct configurations, due-time penalties and order-driven strategy challenge the traditionaloperation and management of assembly lines. The business features and the operation pattern ofassembly line based on mass customization are analyzed. And the research emphatically studiesvarious technologic factors to improve customer satisfaction and their corresponding implementmethods in operating assembly line. In addition, the models are proposed for operating assembly lineunder dynamic process environment in mass customization. A genetic approach is developed to providethe optimal solution to the models. The effectiveness of the proposed approach is evaluated with anindustrial application.
基金Supported by the 12th Five-Year Plan National Pre-research Program of Chinathe Aerospace Science Foundation of China(20111652016)+1 种基金the China Postdoctoral Science Foundation(2012M511748)the Jiangsu Planned Projects for Postdoctoral Research Funds(1102053C)
文摘Aiming at assembly line balancing problem,a double chromosome genetic algorithm(DCGA)is proposed to avoid trapping in local optimum,which is a disadvantage of standard genetic algorithm(SGA).In this algorithm,there are two chromosomes of each individual,and the better one,regarded as dominant chromosome,determines the fitness.Dominant chromosome keeps excellent gene segments to speed up the convergence,and recessive chromosome maintains population diversity to get better global search ability to avoid local optimal solution.When the amounts of chromosomes are equal,the population size of DCGA is half that of SGA,which significantly reduces evolutionary time.Finally,the effectiveness is verified by experiments.
基金Supported by National Defense Basic Scientific Research Project(A092000000)High Quality CNC Machine Tool and Basic Manufacturing Equipment Scientific Major Project(2012ZX04010-061)
文摘A modularized, network, reconfigurable architecture and design method of embedded control module is proposed. This control module uses a TMS320F2812 chip as the core, and intro- duces modularization, network, reconfigurable theory to the design of control module to better meet the flexible and reconfigurable control need of assembly line. The design method of the control module is verified by constructing a control experiment based on controlling of precision x - y displace- ment platform through a CAN bus. Experimental results show that the controlling repeat position accuracy of precision x - y platform by control module is 0. 5 μm and the position error is less than 1μm which meet the needs of micro-adjustment pose of assembly line.
文摘The health check up flow of digital hospital can be consulted with the assem bly line of industry factory.Because they have the following same features:highly specialized workstation, closeness and continuance,rhythm,balanced production,continuous production.The essential prerequisites are as the follows:The inspecting item s and methods should be stable;advanced product mix and stable production design;standardized raw m aterial,consumption,procedure, inspection method;there are lots of request for health inspection;the customers move at the least unit;the space arrangement should be reasonable;the time arrangement should be proportion. With the com puter net,the digital inspection can achieves the raw material controlling accurately. The basis of check up line concerns about equipm ent,net and software,data collection,and per- sonnel.The group technology is used in the health inspection flow design of the digital hospital in the field of items custom ers and zone redivided.The digital assembly linem ic health inspect has the following stages:m ember registering,notice,check in,arrange order,tim e control,report,feed- back and analysis. The assem bly linemic has following advantages:increasing the productivity, the space utility,satisfaction of customer,fund returning,lowering the cost and ensuring the quality.
基金supported by the National Natural Science Foundation of China (No.51875287)the National Defense Basic Scientific Research Program of China (No.JCKY2018605C010)the National Key Research and Development Program of China (No.2018YFB1306800)
文摘The low-stiffness of aircraft skins may results in the differences between aircraft actual parts and their theoretical models,which will consequently affect the accuracy of automatic drilling and riveting in aircraft assembly.In this paper,a novel approach of hole position correction using laser line scanner(LLS)is proposed to assign a single row of holes on the parts’surfaces.First,we adopt a space circle fitting method and the random sample consensus(RANSAC)to obtain the precise coordinates of center of the datum holes’coordinates.Second,LLS is calibrated by the laser tracker,and the relations between the LLS coordinate system and the tool coordinate system(TCS)can be calculated.Third,the kinematics model of the automatic riveting machine is established based on a two-point referencing strategy proposed in this paper.Thus,the positions of the holes to be drilled can be adjusted.Finally,the experimental results show that in TCS the measurement error of LLS is less than 0.1 mm,and the correction error of the hole position is less than 0.5 mm,which demonstrates the reliability of our method.
基金Financed by Henan provincial Fund (No. 0324300201)
文摘A new way to solve the scheduling problem ofgarment assembly line based on genetic algorithmwas proposed. The chromosome was decoded usingtask precedence relation and after the operation ofreproduction, crossover and mutation, the globaloptimal result can be obtained. Fitness function wasrepresented by smoothness Index ( SI ). Thesimulation shows that the method proposed in thispaper is better than the conventional way and theoptimized solution can be got in this way.
基金supported by Key R&D project of Zhejiang Province (2018C01005),http://kjt.zj.gov.cn/.
文摘Numerous clothing enterprises in the market have a relatively low efficiency of assembly line planning due to insufficient optimization of bottleneck stations.As a result,the production efficiency of the enterprise is not high,and the production organization is not up to expectations.Aiming at the problem of flexible process route planning in garment workshops,a multi-object genetic algorithm is proposed to solve the assembly line bal-ance optimization problem and minimize the machine adjustment path.The encoding method adopts the object-oriented path representation method,and the initial population is generated by random topology sorting based on an in-degree selection mechanism.The multi-object genetic algorithm improves the mutation and crossover operations according to the characteristics of the clothing process to avoid the generation of invalid offspring.In the iterative process,the bottleneck station is optimized by reasonable process splitting,and process allocation conforms to the strict limit of the station on the number of machines in order to improve the compilation efficiency.The effectiveness and feasibility of the multi-object genetic algorithm are proven by the analysis of clothing cases.Compared with the artificial allocation process,the compilation efficiency of MOGA is increased by more than 15%and completes the optimization of the minimum machine adjustment path.The results are in line with the expected optimization effect.
文摘Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design.
基金Supported by the National High Technology Research and Development Programme of China (No. 2006AA04Z160) and the National Natural Science Foundation of China ( No. 60874066).
文摘A balancing problem for a mixed model assembly line with uncertain task processmg Ume anO daily model mixed changes is considered, and the objective is to minimize the work variances between stations in the line. For the balancing problem for the scenario-based robust assembly line with a finitely large number of potential scenarios, the direct solution methodology considering all potential scenarios is quite time-consuming. A scenario relaxation algorithm that embeds genetic al- gorithm is developed. This new algorithm guarantees termination at an optimal robust solution with relatively short running time, and makes it possible to solve robust problems with large quantities of potential scenarios. Extensive computational results are reported to show the efficiency and effectiveness of the proposed algorithm.
文摘Mixed-model U-shaped assembly line balancing problems (MMUALBP) is known to be NP-hard resulting in it being nearly impossible to obtain an optimal solution for practical problems with deterministic algorithms. This paper pre-sents a new evolutionary method called combinatorial optimisation with coincidence algorithm (COIN) being applied to Type I problems of MMUALBP in a just-in-time production system. Three objectives are simultaneously considered;minimum number workstations, minimum work relatedness, and minimum workload smoothness. The variances of COIN are also proposed, i.e. CNSGA II, and COIN-MA. COIN and its variances are tested against a well-known algo-rithm namely non-dominated sorting genetic algorithm II (NSGA II) and MNSGA II (a memetic version of NSGA II). Experimental results showed that COIN outperformed NSGA II. In addition, although COIN-MA uses a marginal CPU time than CNSGA II, its other performances are dominated.
文摘This paper aimed to present the optimization of energy resource management in a car factory by the adaptive current search (ACS)—one of the most efficient metaheuristic optimization search techniques. Assembly lines of a specific car factory considered as a case study are balanced by the ACS to optimize their energy resource management. The workload variance of the line is performed as the objective function to be minimized in order to increase the productivity. In this work, the ACS is used to address the number of tasks assigned for each workstation, while the sequence of tasks is assigned by factory. Three real-world assembly line balancing (ALB) problems from a specific car factory are tested. Results obtained by the ACS are compared with those obtained by the genetic algorithm (GA), tabu search (TS) and current search (CS). As results, the ACS outperforms other algorithms. By using the ACS, the productivity can be increased and the energy consumption of the lines can be decreased significantly.
文摘The growing global competition compels organizations to use many productivity improvement techniques. In this direction, assembly line balancing helps an organization to design its assembly line such that its balancing efficiency is maximized. If the organization assembles more than one model in the same line, then the objective is to maximize the average balancing efficiency of the models of the mixed model assembly line balancing problem. Maximization of average balancing efficiency of the models along with minimization of makespan of sequencing models forms a multi-objective function. This is a realistic objective function which combines the balancing efficiency and makespan. This assembly line balancing problem with multi-objective comes under combinatorial category. Hence, development of meta-heuristic is inevitable. In this paper, an attempt has been made to develop three genetic algorithms for the mixed model assembly line balancing problem such that the average balancing efficiency of the model is maximized and the makespan of sequencing the models is minimized. Finally, these three algorithms and another algorithm in literature modified to solve the mixed-model assembly line balancing problem are compared in terms of the stated multi-objective function using a randomly generated set of problems through a complete factorial experiment.
文摘Quality control is an important part of the capacitors automatic assembly process. Traditionally this control is being realized through a series of electrical measurements including capacity, tension, and tgct. In most cases, these measurements are not suitable for detecting defects that appear as a result of failures of certain elements of the assembly lines. These so called self-recovering failures very often remain unnoticed, because they do not cause a suspension of the assembly process and if not taken into consideration, they can seriously menace the final product quality. In this paper, the authors use PFMEA to identify and evaluate the risk of the self-recovering failures. They also propose a simple Simulink model, which could be useful when trying to estimate the effect of installing new control devices at an existing assembly line upon its overall reliability and productivity.