Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses ...Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.展开更多
文摘Three-dimensional numerical computation of the flow fields and pumping performances for the lobed mixer-ejector are conducted using full Navier-Stokes equations. In the computation, the inlet of the primary flow uses the mass flowrate boundary condition. The inlet of the second flow and the outlet of the mixing flow use the pressure boundary condition. Compared with the relative experimental resuits, it is shown that the present calculation is reasonable. And a series of numerical studies is performed to obtain the effects of area ratio and length-to-diameter ratio of mixing duct on pumping coefficient and thermal mixing efficiency of a lobed mixer-ejector.