Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,...Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.展开更多
Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochast...Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.展开更多
The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high...The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.展开更多
Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at t...Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS;the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.展开更多
This paper is concerned with the aging and dependence properties in the additive hazard mixing models including some stochastic comparisons. Further, some useful bounds of reliability functions in additive hazard mixi...This paper is concerned with the aging and dependence properties in the additive hazard mixing models including some stochastic comparisons. Further, some useful bounds of reliability functions in additive hazard mixing models are obtained.展开更多
The quasi-steady methods based on mixing models have been widely applied to flow computations of turbomachinery multi- stages in aerospace engineering. Meanwhile, the unsteady numerical simulation has also been used d...The quasi-steady methods based on mixing models have been widely applied to flow computations of turbomachinery multi- stages in aerospace engineering. Meanwhile, the unsteady numerical simulation has also been used due to its ability in obtaining time-dependent flow solutions. In the paper, two different mixing treatments and the corresponding flux balanced ones are presented to exchange the flow solutions on the interfaces between adjacent blade rows. The four mixing treatments are then used for flow computations of a subsonic 1.5-stage axial turbine and a quasi-l.5-stage transonic compressor rotor. The results are compared with those by unsteady numerical method, which is implemented by using the sliding mesh technique. The effects of the quasi-steady and unsteady computation methods on the conservation of flow solutions across the interfaces are presented and addressed. Furthermore, the influence of mixing treatments on shock wave and flow separation of the transonic compressor rotor is presented in detail. All the results demonstrate that the flux balanced mixing treatments can be used for multi-stage flow computations with improved performance on interface conservation, even in the complex flows.展开更多
In this paper, the measurement of liquid mixing in a downcomer of segmental type of distillation column is presented. The extent of liquid mixing is calculated by means of a mixing pool model. The results indicate tha...In this paper, the measurement of liquid mixing in a downcomer of segmental type of distillation column is presented. The extent of liquid mixing is calculated by means of a mixing pool model. The results indicate that liquid mixing in a downcomer is actually incomplete. It is a significant correction to the assumption of complete downcomer mixing or no downcomer mixing which is generally adopted in many distillation calculations. Besides, the present results are used in a two dimensional eddy diffusion model to calculate the distillation tray efficiency. It is shown that the assumption of complete downcomer mixing is closer to the actual situation than that of no downcomer mixing.展开更多
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow fi...The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.展开更多
Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variabl...Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variables as predictors.Methods:The data were obtained from 44 permanent plots used to monitor stand growth under forest management in the study area.Results:The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting the total height of the species under study.For the genera Pinus and Quercus,the models were successfully calibrated by measuring the height of a subsample of three randomly selected trees close to the mean d,whereas for species of the genera Cupressus,Arbutus and Alnus,three trees were also selected,but they are specifically the maximum,minimum and mean d trees.Conclusions:The presented equations represent a new tool for the evaluation and management of natural forest in the region.展开更多
Background: Predictive models shed light on aboveground fungal yield dynamics and can assist decision-making in forestry by integrating this valuable non-wood forest product into forest management planning. However, t...Background: Predictive models shed light on aboveground fungal yield dynamics and can assist decision-making in forestry by integrating this valuable non-wood forest product into forest management planning. However, the currently existing models are based on rather local data and, thus, there is a lack of predictive tools to monitor mushroom yields on larger scales.Results: This work presents the first empirical models for predicting the annual yields of ectomycorrhizal mushrooms and related ecosystem services in Pinus sylvestris and Pinus pinaster stands in northern Spain, using a long-term dataset suitable to account for the combined effect of meteorological conditions and stand structure.Models were fitted for the following groups of fungi separately: all ectomycorrhizal mushrooms, edible mushrooms and marketed mushrooms. Our results show the influence of the weather variables(mainly precipitation) on mushroom yields as well as the relevance of the basal area of the forest stand that follows a right-skewed unimodal curve with maximum predicted yields at stand basal areas of 30–40 m2·ha-1.Conclusion: These models are the first empirical models for predicting the annual yields of ectomycorrhizal mushrooms in Pinus sylvestris and Pinus pinaster stands in northern Spain, being of the highest resolution developed to date and enable predictions of mushrooms productivity by taking into account weather conditions and forests’ location, composition and structure.展开更多
The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical...The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.展开更多
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ...In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.展开更多
Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared thr...Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared through several flow mixing models. The modeling results of two-parameter model indicated that there were higher ratio of full mixing zones and lower ratio of bypass flow in AL than in BC. Then a completely mixed-plug flow parallel combined (four-parameter) model was established. Modeling results show that it is more precise and more obvious than two-parameter model.展开更多
Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software...Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.展开更多
The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that...The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data.展开更多
This paper compares the stock return distribution models of mixture normal distribution, mixed diffusion-jump and GARCH models based on the data of Chinese stock market. The Schwarz criterion is also used. We find all...This paper compares the stock return distribution models of mixture normal distribution, mixed diffusion-jump and GARCH models based on the data of Chinese stock market. The Schwarz criterion is also used. We find all these models can capture the features of stock returns partly. EGARCH model is the best fitting to daily return and stable during different period. When the weekly and monthly returns are tested, the differences of the models' fitness become unobvious and unstable.展开更多
Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, th...Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.展开更多
<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><...<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">s</span></span></span><span><span><span><span style="color:#000000;"> a general framework for deriving models with desirable properties for modelling financial market variables such as exchange rates, equity prices, and interest rates measured over short time intervals, </span><i><span style="color:#000000;">i.e.</span></i><span style="color:#000000;"> daily or weekly. Such data sets are characterized by non-normality and are usually skewed, fat-tailed and exhibit excess kurtosis. </span><span style="color:#000000;">The Generalised Hyperbolic distribution (GHD) introduced by Barndorff-</span><span style="color:#000000;">Nielsen </span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">(1977)</span></span></span><span><span><span><span style="color:#000000;"> which act as Normal variance-mean mixtures with Generalised Inverse Gaussian (GIG) mixing distribution nest a number of special and limiting case distributions. The Normal Inverse Gaussian (NIG) distribution is obtained when the Inverse Gaussian is the mixing distribution, </span><i><span style="color:#000000;">i.e</span></i></span></span></span><span style="color:#000000;"><span style="color:#000000;"><i><span style="color:#000000;">.</span></i></span></span><span><span><span><span style="color:#000000;">, the index parameter of the GIG is</span><span style="color:red;"> <img src="Edit_721a4317-7ef5-4796-9713-b9057bc426fc.bmp" alt="" /></span><span style="color:#000000;">. The NIG is very popular because of its analytical tractability. In the mixing mechanism</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span><span style="color:#000000;"> the mixing distribution characterizes the prior information of the random variable of the conditional distribution. Therefore, considering finite mixture models is one way of extending the work. The GIG is a three parameter distribution denoted by </span><img src="Edit_d21f2e1e-d426-401e-bf8b-f56d268dddb6.bmp" alt="" /></span><span><span style="color:#000000;"> and nest several special and limiting cases. When </span><img src="Edit_ffee9824-2b75-4ea6-a3d2-e048d49b553f.bmp" alt="" /></span><span><span style="color:#000000;">, we have </span><img src="Edit_654ea565-9798-4435-9a59-a0a1a7c282df.bmp" alt="" /></span><span style="color:#000000;"> which is called an Inverse Gaussian (IG) distribution. </span><span><span><span style="color:#000000;">When </span><img src="Edit_b15daf3d-849f-440a-9e4f-7b0c78d519e5.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_08a2088c-f57e-401c-8fb9-9974eec5947a.bmp" alt="" /><span style="color:#000000;">, </span><img src="Edit_130f4d7c-3e27-4937-b60f-6bf6e41f1f52.bmp" alt="" /><span style="color:#000000;">,</span></span><span><span style="color:#000000;"> we have </span><img src="Edit_215e67cb-b0d9-44e1-88d1-a2598dea05af.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_6bf9602b-a9c9-4a9d-aed0-049c47fe8dfe.bmp" alt="" /></span></span><span style="color:red;"><span style="color:#000000;"> </span><span><span style="color:#000000;">and </span><img src="Edit_d642ba7f-8b63-4830-aea1-d6e5fba31cc8.bmp" alt="" /></span></span><span><span style="color:#000000;"> distributions respectively. These distributions are related to </span><img src="Edit_0ca6658e-54cb-4d4d-87fa-25eb3a0a8934.bmp" alt="" /></span><span style="color:#000000;"> and are called weighted inverse Gaussian distributions. In this</span> <span style="color:#000000;">work</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span style="color:#000000;"> we consider a finite mixture of </span><img src="Edit_30ee74b7-0bfc-413d-b4d6-43902ec6c69d.bmp" alt="" /></span></span></span><span><span><span><span><span style="color:#000000;"> and </span><img src="Edit_ba62dff8-eb11-48f9-8388-68f5ee954c00.bmp" alt="" /></span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;"> and show that the mixture is also a weighted Inverse Gaussian distribution and use it to construct a NVMM. Due to the complexity of the likelihood, direct maximization is difficult. An EM type algorithm is provided for the Maximum Likelihood estimation of the parameters of the proposed model. We adopt an iterative scheme which is not based on explicit solution to the normal equations. This subtle approach reduces the computational difficulty of solving the complicated quantities involved directly to designing an iterative scheme based on a representation of the normal equation. The algorithm is easily programmable and we obtained a monotonic convergence for the data sets used.</span></span></span> </p>展开更多
Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studie...Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studies have lately focused on finite mixture models as mixing distributions in the mixing mechanism. In the present work, we consider a Normal Variance Mean mix<span>ture model. The mixing distribution is a finite mixture of two special cases of</span><span> Generalised Inverse Gaussian distribution with indexes <span style="white-space:nowrap;">-1/2 and -3/2</span>. The </span><span>parameters of the mixed model are obtained via the Expectation-Maximization</span><span> (EM) algorithm. The iterative scheme is based on a presentation of the normal equations. An application to some financial data has been done.展开更多
基金This study was supported by the National Natural Science Foundation of China(42261008,41971034)the Natural Science Foundation of Gansu Province,China(22JR5RA074).
文摘Stable water isotopes are natural tracers quantifying the contribution of moisture recycling to local precipitation,i.e.,the moisture recycling ratio,but various isotope-based models usually lead to different results,which affects the accuracy of local moisture recycling.In this study,a total of 18 stations from four typical areas in China were selected to compare the performance of isotope-based linear and Bayesian mixing models and to determine local moisture recycling ratio.Among the three vapor sources including advection,transpiration,and surface evaporation,the advection vapor usually played a dominant role,and the contribution of surface evaporation was less than that of transpiration.When the abnormal values were ignored,the arithmetic averages of differences between isotope-based linear and the Bayesian mixing models were 0.9%for transpiration,0.2%for surface evaporation,and–1.1%for advection,respectively,and the medians were 0.5%,0.2%,and–0.8%,respectively.The importance of transpiration was slightly less for most cases when the Bayesian mixing model was applied,and the contribution of advection was relatively larger.The Bayesian mixing model was found to perform better in determining an efficient solution since linear model sometimes resulted in negative contribution ratios.Sensitivity test with two isotope scenarios indicated that the Bayesian model had a relatively low sensitivity to the changes in isotope input,and it was important to accurately estimate the isotopes in precipitation vapor.Generally,the Bayesian mixing model should be recommended instead of a linear model.The findings are useful for understanding the performance of isotope-based linear and Bayesian mixing models under various climate backgrounds.
基金supported by the National Natural Science Foundation of China(Grant Nos.82173620 to Yang Zhao and 82041024 to Feng Chen)partially supported by the Bill&Melinda Gates Foundation(Grant No.INV-006371 to Feng Chen)Priority Academic Program Development of Jiangsu Higher Education Institutions.
文摘Deterministic compartment models(CMs)and stochastic models,including stochastic CMs and agent-based models,are widely utilized in epidemic modeling.However,the relationship between CMs and their corresponding stochastic models is not well understood.The present study aimed to address this gap by conducting a comparative study using the susceptible,exposed,infectious,and recovered(SEIR)model and its extended CMs from the coronavirus disease 2019 modeling literature.We demonstrated the equivalence of the numerical solution of CMs using the Euler scheme and their stochastic counterparts through theoretical analysis and simulations.Based on this equivalence,we proposed an efficient model calibration method that could replicate the exact solution of CMs in the corresponding stochastic models through parameter adjustment.The advancement in calibration techniques enhanced the accuracy of stochastic modeling in capturing the dynamics of epidemics.However,it should be noted that discrete-time stochastic models cannot perfectly reproduce the exact solution of continuous-time CMs.Additionally,we proposed a new stochastic compartment and agent mixed model as an alternative to agent-based models for large-scale population simulations with a limited number of agents.This model offered a balance between computational efficiency and accuracy.The results of this research contributed to the comparison and unification of deterministic CMs and stochastic models in epidemic modeling.Furthermore,the results had implications for the development of hybrid models that integrated the strengths of both frameworks.Overall,the present study has provided valuable epidemic modeling techniques and their practical applications for understanding and controlling the spread of infectious diseases.
基金Supported by the National Natural Science Foundation of China(12261108)the General Program of Basic Research Programs of Yunnan Province(202401AT070126)+1 种基金the Yunnan Key Laboratory of Modern Analytical Mathematics and Applications(202302AN360007)the Cross-integration Innovation team of modern Applied Mathematics and Life Sciences in Yunnan Province,China(202405AS350003).
文摘The mixed distribution model is often used to extract information from heteroge-neous data and perform modeling analysis.When the density function of mixed distribution is complicated or the variable dimension is high,it usually brings challenges to the parameter es-timation of the mixed distribution model.The application of MM algorithm can avoid complex expectation calculations,and can also solve the problem of high-dimensional optimization by decomposing the objective function.In this paper,MM algorithm is applied to the parameter estimation problem of mixed distribution model.The method of assembly and decomposition is used to construct the substitute function with separable parameters,which avoids the problems of complex expectation calculations and the inversion of high-dimensional matrices.
文摘Tree height (H) in a natural stand or forest plantation is a fundamental variable in management, and the use of mathematical expressions that estimate H as a function of diameter at breast height (d) or variables at the stand level is a valuable support tool in forest inventories. The objective was to fit and propose a generalized H-d model for Pinus montezumae and Pinus pseudostrobus established in forest plantations of Nuevo San Juan Parangaricutiro, Michoacan, Mexico. Using nonlinear least squares (NLS), 10 generalized H-d models were fitted to 883 and 1226 pairs of H-d data from Pinus montezumae and Pinus pseudostrobus, respectively. The best model was refitted with the maximum likelihood mixed effects model (MEM) approach by including the site as a classification variable and a known variance structure. The Wang and Tang equation was selected as the best model with NLS;the MEM with an additive effect on two of its parameters and an exponential variance function improved the fit statistics for Pinus montezumae and Pinus pseudostrobus, respectively. The model validation showed equality of means among the estimates for both species and an independent subsample. The calibration of the MEM at the plot level was efficient and might increase the applicability of these results. The inclusion of dominant height in the MEM approach helped to reduce bias in the estimates and also to better explain the variability among plots.
基金Supported by the Scientific Research Foundation of Hebei University of Science and Technology
文摘This paper is concerned with the aging and dependence properties in the additive hazard mixing models including some stochastic comparisons. Further, some useful bounds of reliability functions in additive hazard mixing models are obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.51376009&51676003)
文摘The quasi-steady methods based on mixing models have been widely applied to flow computations of turbomachinery multi- stages in aerospace engineering. Meanwhile, the unsteady numerical simulation has also been used due to its ability in obtaining time-dependent flow solutions. In the paper, two different mixing treatments and the corresponding flux balanced ones are presented to exchange the flow solutions on the interfaces between adjacent blade rows. The four mixing treatments are then used for flow computations of a subsonic 1.5-stage axial turbine and a quasi-l.5-stage transonic compressor rotor. The results are compared with those by unsteady numerical method, which is implemented by using the sliding mesh technique. The effects of the quasi-steady and unsteady computation methods on the conservation of flow solutions across the interfaces are presented and addressed. Furthermore, the influence of mixing treatments on shock wave and flow separation of the transonic compressor rotor is presented in detail. All the results demonstrate that the flux balanced mixing treatments can be used for multi-stage flow computations with improved performance on interface conservation, even in the complex flows.
文摘In this paper, the measurement of liquid mixing in a downcomer of segmental type of distillation column is presented. The extent of liquid mixing is calculated by means of a mixing pool model. The results indicate that liquid mixing in a downcomer is actually incomplete. It is a significant correction to the assumption of complete downcomer mixing or no downcomer mixing which is generally adopted in many distillation calculations. Besides, the present results are used in a two dimensional eddy diffusion model to calculate the distillation tray efficiency. It is shown that the assumption of complete downcomer mixing is closer to the actual situation than that of no downcomer mixing.
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
基金supported by National Natural Science Foundation of China (Grant Nos. 51139007, 51079151, 51079152)Research Fundfor the Doctoral Program of Higher Education of China (Grant No. 0100008110012)
文摘The current research of large eddy simulation (LES) of turbulent flow in pumps mainly concentrates in applying conventional subgrid-scale (SGS) model to simulate turbulent flow, which aims at obtaining the flow field in pump. The selection of SGS model is usually not considered seriously, so the accuracy and efficiency of the simulation cannot be ensured. Three SGS models including Smagorinsky-Lilly model, dynamic Smagorinsky model and dynamic mixed model are comparably studied by using the commercial CFD code Fluent combined with its user define function. The simulations are performed for the turbulent flow in a centrifugal pump impeller. The simulation results indicate that the mean flows predicted by the three SGS models agree well with the experimental data obtained from the test that detailed measurements of the flow inside the rotating passages of a six-bladed shrouded centrifugal pump impeller performed using particle image velocimetry (PIV) and laser Doppler velocimetry (LDV). The comparable results show that dynamic mixed model gives the most accurate results for mean flow in the centrifugal pump impeller. The SGS stress of dynamic mixed model is decompose into the scale similar part and the eddy viscous part. The scale similar part of SGS stress plays a significant role in high curvature regions, such as the leading edge and training edge of pump blade. It is also found that the dynamic mixed model is more adaptive to compute turbulence in the pump impeller. The research results presented is useful to improve the computational accuracy and efficiency of LES for centrifugal pumps, and provide important reference for carrying out simulation in similar fluid machineries.
基金financially supported by the"Programa de Mejoramiento del Profesorado"(project:Seguimiento y Evaluacion de Sitios Permanentes de Investigación Forestal y el Impacto Socioeconómico delManejo Forestal en Norte de México)supported by"Programa Banco Santander-USC"(becas para estancias predoctorales destinadas a docentes e investigadores de America Latina)
文摘Background:We used mixed models with random components to develop height-diameter(h-d) functions for mixed,uneven-aged stands in northwestern Durango(Mexico),considering the breast height diameter(d) and stand variables as predictors.Methods:The data were obtained from 44 permanent plots used to monitor stand growth under forest management in the study area.Results:The generalized Bertalanffy-Richards model performed better than the other generalized models in predicting the total height of the species under study.For the genera Pinus and Quercus,the models were successfully calibrated by measuring the height of a subsample of three randomly selected trees close to the mean d,whereas for species of the genera Cupressus,Arbutus and Alnus,three trees were also selected,but they are specifically the maximum,minimum and mean d trees.Conclusions:The presented equations represent a new tool for the evaluation and management of natural forest in the region.
基金partially supported by the Spanish Ministry of Science,Innovation and Universities(grant number RTI2018-099315-A-I00)by the Spanish Ministry of Economy and Competitivity(MINECO)(Grant number AGL2015–66001-C3)+1 种基金by the Cost action FP1203:European Non-Wood Forest Products Networkby the European project Star Tree–Multipurpose trees and non-wood forest products(Grant number 311919)a Serra-Húnter Fellowship provided by the Generalitat of Catalunya
文摘Background: Predictive models shed light on aboveground fungal yield dynamics and can assist decision-making in forestry by integrating this valuable non-wood forest product into forest management planning. However, the currently existing models are based on rather local data and, thus, there is a lack of predictive tools to monitor mushroom yields on larger scales.Results: This work presents the first empirical models for predicting the annual yields of ectomycorrhizal mushrooms and related ecosystem services in Pinus sylvestris and Pinus pinaster stands in northern Spain, using a long-term dataset suitable to account for the combined effect of meteorological conditions and stand structure.Models were fitted for the following groups of fungi separately: all ectomycorrhizal mushrooms, edible mushrooms and marketed mushrooms. Our results show the influence of the weather variables(mainly precipitation) on mushroom yields as well as the relevance of the basal area of the forest stand that follows a right-skewed unimodal curve with maximum predicted yields at stand basal areas of 30–40 m2·ha-1.Conclusion: These models are the first empirical models for predicting the annual yields of ectomycorrhizal mushrooms in Pinus sylvestris and Pinus pinaster stands in northern Spain, being of the highest resolution developed to date and enable predictions of mushrooms productivity by taking into account weather conditions and forests’ location, composition and structure.
基金Supported by the National Natural Science Foundation of China (60704002)
文摘The transient behaviors of traditional adaptive control may be very poor in general. A practically feasible approach to improve the transient performances is the adoption of adaptive switc- hing control. For a typical class of nonlinear systems disturbed by random noises, mixed multiple models consisting of adaptive model and fixed models were considered to design the switching con- trol law. Under certain assumptions, the nonlinear system with the switching control law was proved rigorously to be stable and optimal A simulation example was provided to compare the performance of the switching control and the traditional adaptive control.
基金supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (0506011200702)National Natural Science Foundation of China+2 种基金Tian Yuan Special Foundation (10926059)Foundation of Zhejiang Educational Committee (Y200803920)Scientific Research Foundation of Hangzhou Dianzi University(KYS025608094)
文摘In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.
文摘Residence time distribution (RTD) analysis of liquid phase was conducted in an internal airlift loop reactor (AL) and a bubble column (BC) with the tracer response technique. These data were simulated and compared through several flow mixing models. The modeling results of two-parameter model indicated that there were higher ratio of full mixing zones and lower ratio of bypass flow in AL than in BC. Then a completely mixed-plug flow parallel combined (four-parameter) model was established. Modeling results show that it is more precise and more obvious than two-parameter model.
文摘Several computer packages have been developed to accomplish improved programs for animal breeding and genetic selection. This paper described most of the currant software and provided suggestions for improved software. Khon Kaen University, Thailand, will provide free of charge the new software developed at Khon Kaen University by the author of this paper. The contact for requesting the software is listed: monchai@kku.ac.th.
基金Supported by the National Basic Research Program of China under Grant No.2007CB815100the National Natural Science Foundation of China under Grant Nos.10775020 and 10935003
文摘The effects of atomic-level rnixing are systemically investigated in a multifluid interpenetration mix model ,and results are compared with the single-fluid model's simulations and experimental data. It is shown that increasing the model free parameter α, shock Mach number, and the initial density discontinuity makes the mix length and fraction of mixing particle increase, resulting in the lower shock temperatures compared with the results of single-fluid model without mixing. Recent high-compressibility direct-drive spherical implosions on OMEGA are simulated by the interpenetration mix modal. The calculations with atomic mixing between fuel and shell match quite well with the observations. Without considering any mixing, the calculated neutron yields and ion temperatures are overpredicted; while inclusion of the interpenetration mix model with the adjustable parameter α could fit the simulated neutron yields and ion temperatures well with experimental data.
文摘This paper compares the stock return distribution models of mixture normal distribution, mixed diffusion-jump and GARCH models based on the data of Chinese stock market. The Schwarz criterion is also used. We find all these models can capture the features of stock returns partly. EGARCH model is the best fitting to daily return and stable during different period. When the weekly and monthly returns are tested, the differences of the models' fitness become unobvious and unstable.
文摘Today, Linear Mixed Models (LMMs) are fitted, mostly, by assuming that random effects and errors have Gaussian distributions, therefore using Maximum Likelihood (ML) or REML estimation. However, for many data sets, that double assumption is unlikely to hold, particularly for the random effects, a crucial component </span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">in </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">which assessment of magnitude is key in such modeling. Alternative fitting methods not relying on that assumption (as ANOVA ones and Rao</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">’</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">s MINQUE) apply, quite often, only to the very constrained class of variance components models. In this paper, a new computationally feasible estimation methodology is designed, first for the widely used class of 2-level (or longitudinal) LMMs with only assumption (beyond the usual basic ones) that residual errors are uncorrelated and homoscedastic, with no distributional assumption imposed on the random effects. A major asset of this new approach is that it yields nonnegative variance estimates and covariance matrices estimates which are symmetric and, at least, positive semi-definite. Furthermore, it is shown that when the LMM is, indeed, Gaussian, this new methodology differs from ML just through a slight variation in the denominator of the residual variance estimate. The new methodology actually generalizes to LMMs a well known nonparametric fitting procedure for standard Linear Models. Finally, the methodology is also extended to ANOVA LMMs, generalizing an old method by Henderson for ML estimation in such models under normality.
文摘<p> <span style="color:#000000;"><span style="color:#000000;">Normal Variance-Mean Mixture (NVMM) provide</span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">s</span></span></span><span><span><span><span style="color:#000000;"> a general framework for deriving models with desirable properties for modelling financial market variables such as exchange rates, equity prices, and interest rates measured over short time intervals, </span><i><span style="color:#000000;">i.e.</span></i><span style="color:#000000;"> daily or weekly. Such data sets are characterized by non-normality and are usually skewed, fat-tailed and exhibit excess kurtosis. </span><span style="color:#000000;">The Generalised Hyperbolic distribution (GHD) introduced by Barndorff-</span><span style="color:#000000;">Nielsen </span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">(1977)</span></span></span><span><span><span><span style="color:#000000;"> which act as Normal variance-mean mixtures with Generalised Inverse Gaussian (GIG) mixing distribution nest a number of special and limiting case distributions. The Normal Inverse Gaussian (NIG) distribution is obtained when the Inverse Gaussian is the mixing distribution, </span><i><span style="color:#000000;">i.e</span></i></span></span></span><span style="color:#000000;"><span style="color:#000000;"><i><span style="color:#000000;">.</span></i></span></span><span><span><span><span style="color:#000000;">, the index parameter of the GIG is</span><span style="color:red;"> <img src="Edit_721a4317-7ef5-4796-9713-b9057bc426fc.bmp" alt="" /></span><span style="color:#000000;">. The NIG is very popular because of its analytical tractability. In the mixing mechanism</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span><span style="color:#000000;"> the mixing distribution characterizes the prior information of the random variable of the conditional distribution. Therefore, considering finite mixture models is one way of extending the work. The GIG is a three parameter distribution denoted by </span><img src="Edit_d21f2e1e-d426-401e-bf8b-f56d268dddb6.bmp" alt="" /></span><span><span style="color:#000000;"> and nest several special and limiting cases. When </span><img src="Edit_ffee9824-2b75-4ea6-a3d2-e048d49b553f.bmp" alt="" /></span><span><span style="color:#000000;">, we have </span><img src="Edit_654ea565-9798-4435-9a59-a0a1a7c282df.bmp" alt="" /></span><span style="color:#000000;"> which is called an Inverse Gaussian (IG) distribution. </span><span><span><span style="color:#000000;">When </span><img src="Edit_b15daf3d-849f-440a-9e4f-7b0c78d519e5.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_08a2088c-f57e-401c-8fb9-9974eec5947a.bmp" alt="" /><span style="color:#000000;">, </span><img src="Edit_130f4d7c-3e27-4937-b60f-6bf6e41f1f52.bmp" alt="" /><span style="color:#000000;">,</span></span><span><span style="color:#000000;"> we have </span><img src="Edit_215e67cb-b0d9-44e1-88d1-a2598dea05af.bmp" alt="" /></span><span style="color:red;"><span style="color:#000000;">, </span><img src="Edit_6bf9602b-a9c9-4a9d-aed0-049c47fe8dfe.bmp" alt="" /></span></span><span style="color:red;"><span style="color:#000000;"> </span><span><span style="color:#000000;">and </span><img src="Edit_d642ba7f-8b63-4830-aea1-d6e5fba31cc8.bmp" alt="" /></span></span><span><span style="color:#000000;"> distributions respectively. These distributions are related to </span><img src="Edit_0ca6658e-54cb-4d4d-87fa-25eb3a0a8934.bmp" alt="" /></span><span style="color:#000000;"> and are called weighted inverse Gaussian distributions. In this</span> <span style="color:#000000;">work</span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;">,</span></span></span><span><span><span><span style="color:#000000;"> we consider a finite mixture of </span><img src="Edit_30ee74b7-0bfc-413d-b4d6-43902ec6c69d.bmp" alt="" /></span></span></span><span><span><span><span><span style="color:#000000;"> and </span><img src="Edit_ba62dff8-eb11-48f9-8388-68f5ee954c00.bmp" alt="" /></span></span></span></span><span style="color:#000000;"><span style="color:#000000;"><span style="color:#000000;"> and show that the mixture is also a weighted Inverse Gaussian distribution and use it to construct a NVMM. Due to the complexity of the likelihood, direct maximization is difficult. An EM type algorithm is provided for the Maximum Likelihood estimation of the parameters of the proposed model. We adopt an iterative scheme which is not based on explicit solution to the normal equations. This subtle approach reduces the computational difficulty of solving the complicated quantities involved directly to designing an iterative scheme based on a representation of the normal equation. The algorithm is easily programmable and we obtained a monotonic convergence for the data sets used.</span></span></span> </p>
文摘Mixture models have become more popular in modelling compared to standard distributions. The mixing distributions play a role in capturing the variability of the random variable in the conditional distribution. Studies have lately focused on finite mixture models as mixing distributions in the mixing mechanism. In the present work, we consider a Normal Variance Mean mix<span>ture model. The mixing distribution is a finite mixture of two special cases of</span><span> Generalised Inverse Gaussian distribution with indexes <span style="white-space:nowrap;">-1/2 and -3/2</span>. The </span><span>parameters of the mixed model are obtained via the Expectation-Maximization</span><span> (EM) algorithm. The iterative scheme is based on a presentation of the normal equations. An application to some financial data has been done.