Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study...Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.展开更多
A new first degree solids mixing rate is proposed to evaluate the mixing of solids in small scale Iluidized beds. Particle mixing experiments were carried out in a 2D fluidized bed with a cross-section of 0.02 m ×...A new first degree solids mixing rate is proposed to evaluate the mixing of solids in small scale Iluidized beds. Particle mixing experiments were carried out in a 2D fluidized bed with a cross-section of 0.02 m × 0.2 m and a height of Im. white and black particles with average diameters of 850 and 450 μm were used in our experiments. Image processing was used to measure the concentration of the tracers at different times. The effects of four representative operating parameters (superficial gas velocity, ratio of tracer particles to bed particles, tracer particle position, and particle size) on mixing are discussed with reference to the mixing index. We found that the Lacey index depends on the concentration of the tracers, The position of the tracers affects the initial mixing rate but not the final degree of mixing. However, the new mixing rate equation does not depend on the initial configuration of the particles because this situation is considered to be the initial condition. Using the data obtained in this work and that found in literature, an empirical correlation is proposed to evaluate the mixing rate constant as a function of dimensionless numbers (Archimedes, Reynolds, and Froude) in small scale fluidized beds. This correlation allows for an estimation of the mixing rate under different operating conditions and for the detection of the end point and/or the time of mixing.展开更多
We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that th...We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that the characteristics of barotropic and baroclinic tides are mainly diurnal.During the observation period,we also estimated the mixing before and after the passage of Typhoon Pabuk.We found that the internal-wave-scale dissipation rate,the turbulent dissipation rate,and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage.We analyzed a case of abrupt strong current and calculated the mixing rate before,during,and after the typhoon event.The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event,while the turbulent dissipation rate increased by about an order of magnitude.Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude.However,the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong.The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.展开更多
Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline str...Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.展开更多
Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the l...Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the laserinduced planar laser Mie scattering (PLMS) technique. Two methods are developed to investigate the spatial distribu- tion and geometry of IWS: (1) the dominant mode extrac- tion (DME) method, to extract the dominant modes of IWS from the streamwise gray-level fluctuation, and (2) the phase tracking (PT) method, to identify the shape of IWS. The re- sults suggest that pressure perturbations account for the for- marion of IWS in the initial mixing region and the joint effect of dilatation and coherent vortices enhances IWS in the well- developed region. The large transverse (cross-flow) scale of the IWS and their relation to coherent vortices (CV) indicate that the disturbance originated from CV in the mixing center propagates far into the free streams. The DME and the PT method are shown to be the effective tools to study the geometrical features of wavy structures in compressible shear flows.展开更多
We study the mixing rate of non-backtracking random walks on graphs by looking at non-backtracking walks as walks on the directed edges of a graph. A result known as Ihara’s Theorem relates the adjacency matrix of a ...We study the mixing rate of non-backtracking random walks on graphs by looking at non-backtracking walks as walks on the directed edges of a graph. A result known as Ihara’s Theorem relates the adjacency matrix of a graph to a matrix related to non-backtracking walks on the directed edges. We prove a weighted version of Ihara’s Theorem which relates the transition probability matrix of a non-backtracking walk to the transition matrix for the usual random walk. This allows us to determine the spectrum of the transition probability matrix of a non-backtracking random walk in the case of regular graphs and biregular graphs. As a corollary, we obtain a result of Alon et al. in [1] that in most cases, a non-backtracking random walk on a regular graph has a faster mixing rate than the usual random walk. In addition, we obtain an analogous result for biregular graphs.展开更多
This paper attempts to optimize optimal capacities, block routing and mine sequencing problems in a mining system. The solution approach is based on a heuristics and the mixed integer programming (MIP). Unlike previou...This paper attempts to optimize optimal capacities, block routing and mine sequencing problems in a mining system. The solution approach is based on a heuristics and the mixed integer programming (MIP). Unlike previous sequential solution approaches, the problems are herein solved at the same time. Furthermore, the proposed approach guarantees practical solutions because it considers ore material distribution within orebody. The paper has two main contributions: (a) the proposed approach generates production rates in a manner that the capacities are satisfied; (b) the proposed approach does not use pre-defined marginal cut-off grades. Thus, idle capacity problem is eliminated and different scheduling combinations are allowed. To see the performance of the approach proposed, a case study is carried out using a gold data. The schedule generated shows that the approach can determine optimal production rates, block destination and sequencing effectively.展开更多
We establish strong invariance principles for sums of stationary p-mixing random variables with finite and infinite second moments under weaker mixing rates. Some earlier results are improved. As applications, some re...We establish strong invariance principles for sums of stationary p-mixing random variables with finite and infinite second moments under weaker mixing rates. Some earlier results are improved. As applications, some results of the law of the iterated logarithm with finite and infinite variance are obtained, also a conjecture raised by Shao in 1993 is solved展开更多
A novel criterion of mixing time in gas-stirred ladle systems was proposed in this paper. The essential difference between the previous criterion and the present one is that the former is based on the concentration it...A novel criterion of mixing time in gas-stirred ladle systems was proposed in this paper. The essential difference between the previous criterion and the present one is that the former is based on the concentration itself while the latter is based on the variation rate of the concentration, which reflects the mixing efficiency directly. Experiment was carried out in an acrylic glass vessel with bottom blowing, and the tracer concentration was monitored by electrical conductivity probes. The mixing time obtained through the new criterion is approximately 20% less than that obtained through the 95% criterion, and the deviations of mixing times calculated from the new criterion are smaller than that from the previous one under the same conditions.展开更多
Bunimovich billiards are ergodic and mixing. However, if the billiard table contains very large arcs on its boundary then if there exist trajectories experience infinitely many collisions in the vicinity of periodic t...Bunimovich billiards are ergodic and mixing. However, if the billiard table contains very large arcs on its boundary then if there exist trajectories experience infinitely many collisions in the vicinity of periodic trajectories on the large arc. The hyperbolicity is nonuniform and the mixing rate is very slow. The corresponding dynamics are intermittent between regular and chaotic, which makes them particularly interesting in physical studies. The study of mixing rates in intermittent chaotic systems is more difficult than that of truly chaotic ones, and the resulting estimates may depend on delicate details of the dynamics in the traps. We present a rigorous analysis of the corresponding singularities and correlations to certain class of billiards and show the mixing rate is of order 1/n.展开更多
With the steady growth of traffic volume in core networks,it is predicted that future optical network communication will be constrained mainly by cost and power consumption.Thus,for Internet sustainability,it will be ...With the steady growth of traffic volume in core networks,it is predicted that future optical network communication will be constrained mainly by cost and power consumption.Thus,for Internet sustainability,it will be necessary to ensure cost and power efficiency in optical networks.The aims of this study are(i)to identify the main sources of cost and power consumption in fixed-grid(SLR and MLR)and flexi-grid(OFDM)optical networks,and(ii)to compare techniques for improving cost and power efficiency in SLR/MLR-and OFDM-based networks.To this end,we conducted a comparative analysis of cost and power efficiency for the OFDM-and MLR/SLR-based networks,and considering realistic networks,evaluated the cost and power consumed by different components in the optical layer.Our results show that(i)OFDM-based networks outperform those based on MLR/SLR in terms of both cost and power-efficiency,(ii)the extra equipment cost incurred due to under-utilization of spectrum is reduced by switching to a flexi-grid network,(iii)lower power consumption per bit is obtained when the networking solution ensures a finer bit-rate granularity,and(iv)there exists a power and spectrum minimization trade-off that is network characteristic dependent.展开更多
In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strat...In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics(such as concentrations of mixed liquor suspended solids(MLSS)and microbial communities)and operating conditions(such as air flow rate and operational dissolved oxygen(DO)concentrations). Moreover,operational DO is closely linked to effluent quality. This study,which is in reference to WWTP discharge class A Chinese standard effluent criteria,determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3 mg/L,and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions,as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model(determined using different air flow rate(Q′air)and mixed liquor volatile suspended solids(MLVSS)values),theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however,operating at low DO and low MLVSS could significantly reduce energy consumption. Finally,a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed,which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology.展开更多
Foamed asphalt typically relies on water as a foaming agent because water becomes gaseous at elevated temperatures, generating numerous tiny bubbles in the asphalt and causing spontaneous foaming. In this study, ethan...Foamed asphalt typically relies on water as a foaming agent because water becomes gaseous at elevated temperatures, generating numerous tiny bubbles in the asphalt and causing spontaneous foaming. In this study, ethanol was used as a potential alternative to water as a foaming agent. Ethanol is expected to be a physical blowing agent in the same manner as water, except it requires less energy to foam due to its 78 ℃ boiling point. This study compares the performance of water and ethanol as foaming agents through the measurements of rotational viscosity, the reduction in temperature during foaming, and volatile loss. The ethanol-foamed asphalt binders were prepared at 80 ~C and 100 ~C, while the water-foamed asphalt binders were prepared at 100 ~C and 120 ~'C. Additionally, the rolling thin film oven (RTFO) was used to generate short-term aging of the foamed asphalt binders. A rotational viscometer was used to determine the viscosity of the asphalt binders at 80 ~C, 100 ~C, 120 ~C, 140 ~C, and 160 ~C. Overall, ethanol can function in the same manner as water but requires less energy to foam. It is proven based on the smaller drop in temperature of the asphalt binder foamed using ethanol compared with that prepared with water. This is due to the lower latent heat capacity of ethanol, which requires less energy to vaporize compared with water. Through the rotational viscometer test, ethanol performs better in lowering the viscosity of asphalt binders, which is essential in allowing produc- tion processes at low temperatures, as well as a better workability and aggregate coating. Ethanol can be expelled from the foamed asphalt binders at a higher rate due to its lower boiling point and latent heat.展开更多
The tremendous and consistent increase in the volume and heterogeneity of traffic has resulted in major innovations in the telecommunication networks.In regard to the optical networks,existing studies have shown that ...The tremendous and consistent increase in the volume and heterogeneity of traffic has resulted in major innovations in the telecommunication networks.In regard to the optical networks,existing studies have shown that by adopting a mixed line rate(MLR)strategy,the wavelength division multiplexed optical networks can cost-effectively respond to the diverse variety of traffic requirements which have heterogeneous service demands.Unlike existing studies which focus on various MLR network issues by considering deployment of the standard single mode fiber only within the network,in the current work,we investigate the signal quality deterioration due to the combined effects of dominant physical layer impairments for an MLR optical network conforming to the various ITU-T compliant fibers and also considering the optical frequency grid based on ITU-T Recommendation G.692.The main aim of our current study is to identify,for a given fiber,the modulation format configuration which provides the highest performance.We conduct extensive simulations on the considered MLR system using the obtained optimum channel spacing values between the single and mixed line rates.Our results show that the existence of 10 Gbit/s line rate has a detrimental effect on the 40 Gbit/s and/or 100 Gbit/s line rate;however,the 40 Gbit/s and/or 100 Gbit/s line rate’s effect on a 10 Gbit/s line rate is not so detrimental,as well as between the similar line rates.Overall,our results clearly show that choice of the line rate of both,the central channel and its adjacent channels,has a major effect on the MLR network performance.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.51064017 and 51464031)
文摘Controlled Diffusion Solidification(CDS) is a promising process relied on mixing two liquid alloys of precisely controlled chemistry and temperature in order to produce a predetermined alloy composition. In this study, the CDS was employed to prepare hypereutectic Al-20%Si(mass fraction) alloy using Al-30%Si and pure Al of different temperatures. The mixing rate was controlled using three small crucibles with a hole of different diameters in their bottom. The effect of mixing rate and temperature on the microstructure of the primary Si-phase during the mixing of molten Al and Al-30%Si was studied. The results showed that when the diameter of the small crucible bottom hole is 16 mm, a higher mass mixing rate 0.217 kg·s-1 would results in a lower stream velocity 0.414 m·s-1. Conversely a lower mass mixing rate 0.114 kg·s-1(the diameter of the small crucible bottom hole is 8 mm) would result in a higher fluid stream velocity 0.879 m·s-1. A lower mass mixing rate would be better to refine the primary Si than a higher mass mixing rate. Meanwhile, the morphology and distribution of primary Si could also be improved. Especially, when Al-30%Si alloy at 820 °C was mixed with pure Al at 670 °C in the case of a mass mixing rate of 0.114 kg·s-1 and a pouring temperature of 680 °C, the average size of the primary Si phase would be only 18.2 μm. Its morphology would mostly be octahedral and the primary Si would distribute uniformly in the matrix microstructure. The lower mass mixing rate(0.114 kg·s-1) will enhance the broken tendency of Al-30%Si steam and the mixing agitation of resultant melt, so the primary Si phase can be better refined.
文摘A new first degree solids mixing rate is proposed to evaluate the mixing of solids in small scale Iluidized beds. Particle mixing experiments were carried out in a 2D fluidized bed with a cross-section of 0.02 m × 0.2 m and a height of Im. white and black particles with average diameters of 850 and 450 μm were used in our experiments. Image processing was used to measure the concentration of the tracers at different times. The effects of four representative operating parameters (superficial gas velocity, ratio of tracer particles to bed particles, tracer particle position, and particle size) on mixing are discussed with reference to the mixing index. We found that the Lacey index depends on the concentration of the tracers, The position of the tracers affects the initial mixing rate but not the final degree of mixing. However, the new mixing rate equation does not depend on the initial configuration of the particles because this situation is considered to be the initial condition. Using the data obtained in this work and that found in literature, an empirical correlation is proposed to evaluate the mixing rate constant as a function of dimensionless numbers (Archimedes, Reynolds, and Froude) in small scale fluidized beds. This correlation allows for an estimation of the mixing rate under different operating conditions and for the detection of the end point and/or the time of mixing.
基金Supported by the Knowledge Innovation Program of the Chinese Academy of Sciences (No.KZCX1-YW-12-03)China National Funds for Distinguished Young Scientists, National High Technology Research and Development Program of China (863 Program) (Nos.2008AA09Z112,2008AA09A402)+1 种基金National Natural Science Foundation of China (No.40676021)the Chinese Oceanic Association (No.DYXM-115-02-4-02)
文摘We investigated the vertical distribution of current velocity data of the entire water column at a site on the continental shelf of the northern South China Sea(SCS) from August 4 to September 6,2007,and found that the characteristics of barotropic and baroclinic tides are mainly diurnal.During the observation period,we also estimated the mixing before and after the passage of Typhoon Pabuk.We found that the internal-wave-scale dissipation rate,the turbulent dissipation rate,and the mixing rate in every water layer increased by about an order of magnitude after the typhoon passage.We analyzed a case of abrupt strong current and calculated the mixing rate before,during,and after the typhoon event.The results show that the internal-wave-scale dissipation rate and the mixing rate in every water layer increased by about two orders of magnitude during the event,while the turbulent dissipation rate increased by about an order of magnitude.Passage of the abrupt strong current could also have increased the mixing rate of affected seawater by more than an order of magnitude.However,the passage of the typhoon differed in that there was an increase in mixing only in the lower layer where the abrupt strong current was particularly strong.The variation of the mixing rate may help us to understand the effects of typhoons and abrupt strong currents on the mixing of seawater.
基金Chinese Polar Environment Comprehensive Investigation and Assessment Programs under contract Nos CHINARE-01-01and CHINARE-04-01
文摘Turbulent mixing in the upper ocean(30-200 m) of the northwestern Weddell Sea is investigated based on profiles of temperature,salinity and microstructure data obtained during February 2014.Vertical thermohaline structures are distinct due to geographic features and sea ice distribution,resulting in that turbulent dissipation rates(ε) and turbulent diffusivity(K) are vertically and spatially non-uniform.On the shelf north of Antarctic Peninsula and Philip Ridge,with a relatively homogeneous vertical structure of temperature and salinity through the entire water column in the upper 200 m,both ε and K show significantly enhanced values in the order of O(10^(-7))-O(10^(-6)) W/kg and O(10^(-3))-O(10^(-2)) m^2/s respectively,about two or three orders of magnitude higher than those in the open ocean.Mixing intensities tend to be mild due to strong stratification in the Powell Basin and South Orkney Plateau,where s decreases with depth from O(10^(-8)) to O(10^(-9)) W/kg,while K changes vertically in an inverse direction relative to s from O(10^(-6)) to O(10^(-5)) m^2/s.In the marginal ice zone,K is vertically stable with the order of10^(-4) m^2/s although both intense dissipation and strong stratification occur at depth of 50-100 m below a cold freshened mixed layer.Though previous studies indentify wind work and tides as the primary energy sources for turbulent mixing in coastal regions,our results indicate weak relationship between K and wind stress or tidal kinetic energy.Instead,intensified mixing occurs with large bottom roughness,demonstrating that only when internal waves generated by wind and tide impinge on steep topography can the energy dissipate to support mixing.In addition,geostrophic current flowing out of the Weddell Sea through the gap west of Philip Passage is another energy source contributing to the local intense mixing.
基金supported by National Nature Science Foundation of China(90716008,10572004,and 11172006)by MOST 973 Project(2009CB724100)
文摘Semi-periodic structures namely inclined wavy structures (IWS) are experimentally observed in compressible mixing layers at two convective Mach numbers (Mc = 0.11 and 0.47). Flow structures are visualized by the laserinduced planar laser Mie scattering (PLMS) technique. Two methods are developed to investigate the spatial distribu- tion and geometry of IWS: (1) the dominant mode extrac- tion (DME) method, to extract the dominant modes of IWS from the streamwise gray-level fluctuation, and (2) the phase tracking (PT) method, to identify the shape of IWS. The re- sults suggest that pressure perturbations account for the for- marion of IWS in the initial mixing region and the joint effect of dilatation and coherent vortices enhances IWS in the well- developed region. The large transverse (cross-flow) scale of the IWS and their relation to coherent vortices (CV) indicate that the disturbance originated from CV in the mixing center propagates far into the free streams. The DME and the PT method are shown to be the effective tools to study the geometrical features of wavy structures in compressible shear flows.
文摘We study the mixing rate of non-backtracking random walks on graphs by looking at non-backtracking walks as walks on the directed edges of a graph. A result known as Ihara’s Theorem relates the adjacency matrix of a graph to a matrix related to non-backtracking walks on the directed edges. We prove a weighted version of Ihara’s Theorem which relates the transition probability matrix of a non-backtracking walk to the transition matrix for the usual random walk. This allows us to determine the spectrum of the transition probability matrix of a non-backtracking random walk in the case of regular graphs and biregular graphs. As a corollary, we obtain a result of Alon et al. in [1] that in most cases, a non-backtracking random walk on a regular graph has a faster mixing rate than the usual random walk. In addition, we obtain an analogous result for biregular graphs.
文摘This paper attempts to optimize optimal capacities, block routing and mine sequencing problems in a mining system. The solution approach is based on a heuristics and the mixed integer programming (MIP). Unlike previous sequential solution approaches, the problems are herein solved at the same time. Furthermore, the proposed approach guarantees practical solutions because it considers ore material distribution within orebody. The paper has two main contributions: (a) the proposed approach generates production rates in a manner that the capacities are satisfied; (b) the proposed approach does not use pre-defined marginal cut-off grades. Thus, idle capacity problem is eliminated and different scheduling combinations are allowed. To see the performance of the approach proposed, a case study is carried out using a gold data. The schedule generated shows that the approach can determine optimal production rates, block destination and sequencing effectively.
基金supported by National Natural Science Foundation of China(Grant Nos. 11171303 and 60974006)the Specialized Research Fund for the Doctor Program of Higher Education(Grant No.20090101110020)the Natural Science Foundation of Zhejiang Province(Grant No.Y6100176)
文摘We establish strong invariance principles for sums of stationary p-mixing random variables with finite and infinite second moments under weaker mixing rates. Some earlier results are improved. As applications, some results of the law of the iterated logarithm with finite and infinite variance are obtained, also a conjecture raised by Shao in 1993 is solved
基金financially supported by the National Natural Science Foundation of China (Nos. 51274030 and 51204001)
文摘A novel criterion of mixing time in gas-stirred ladle systems was proposed in this paper. The essential difference between the previous criterion and the present one is that the former is based on the concentration itself while the latter is based on the variation rate of the concentration, which reflects the mixing efficiency directly. Experiment was carried out in an acrylic glass vessel with bottom blowing, and the tracer concentration was monitored by electrical conductivity probes. The mixing time obtained through the new criterion is approximately 20% less than that obtained through the 95% criterion, and the deviations of mixing times calculated from the new criterion are smaller than that from the previous one under the same conditions.
基金supported by the National Natural Science Foundation of USA (No. NSF-DMS 0901448)
文摘Bunimovich billiards are ergodic and mixing. However, if the billiard table contains very large arcs on its boundary then if there exist trajectories experience infinitely many collisions in the vicinity of periodic trajectories on the large arc. The hyperbolicity is nonuniform and the mixing rate is very slow. The corresponding dynamics are intermittent between regular and chaotic, which makes them particularly interesting in physical studies. The study of mixing rates in intermittent chaotic systems is more difficult than that of truly chaotic ones, and the resulting estimates may depend on delicate details of the dynamics in the traps. We present a rigorous analysis of the corresponding singularities and correlations to certain class of billiards and show the mixing rate is of order 1/n.
文摘With the steady growth of traffic volume in core networks,it is predicted that future optical network communication will be constrained mainly by cost and power consumption.Thus,for Internet sustainability,it will be necessary to ensure cost and power efficiency in optical networks.The aims of this study are(i)to identify the main sources of cost and power consumption in fixed-grid(SLR and MLR)and flexi-grid(OFDM)optical networks,and(ii)to compare techniques for improving cost and power efficiency in SLR/MLR-and OFDM-based networks.To this end,we conducted a comparative analysis of cost and power efficiency for the OFDM-and MLR/SLR-based networks,and considering realistic networks,evaluated the cost and power consumed by different components in the optical layer.Our results show that(i)OFDM-based networks outperform those based on MLR/SLR in terms of both cost and power-efficiency,(ii)the extra equipment cost incurred due to under-utilization of spectrum is reduced by switching to a flexi-grid network,(iii)lower power consumption per bit is obtained when the networking solution ensures a finer bit-rate granularity,and(iv)there exists a power and spectrum minimization trade-off that is network characteristic dependent.
基金supported by the National Science and Technology Major Project(No.2013ZX07314-001)
文摘In wastewater treatment plants(WWTPs)using the activated sludge process,two methods are widely used to improve aeration efficiency — use of high-efficiency aeration devices and optimizing the aeration control strategy. Aeration efficiency is closely linked to sludge characteristics(such as concentrations of mixed liquor suspended solids(MLSS)and microbial communities)and operating conditions(such as air flow rate and operational dissolved oxygen(DO)concentrations). Moreover,operational DO is closely linked to effluent quality. This study,which is in reference to WWTP discharge class A Chinese standard effluent criteria,determined the growth kinetics parameters of nitrifiers at different DO levels in small-scale tests. Results showed that the activated sludge system could meet effluent criteria when DO was as low as 0.3 mg/L,and that nitrifier communities cultivated under low DO conditions had higher oxygen affinity than those cultivated under high DO conditions,as indicated by the oxygen half-saturation constant and nitrification ability. Based on nitrifier growth kinetics and on the oxygen mass transfer dynamic model(determined using different air flow rate(Q′air)and mixed liquor volatile suspended solids(MLVSS)values),theoretical analysis indicated limited potential for energy saving by improving aeration diffuser performance when the activated sludge system had low oxygen consumption; however,operating at low DO and low MLVSS could significantly reduce energy consumption. Finally,a control strategy coupling sludge retention time and MLVSS to minimize the DO level was discussed,which is critical to appropriate setting of the oxygen point and to the operation of low DO treatment technology.
基金the National Science Foundation(NSF),which funded a research grant through the SusChem/Collaborative Research Program(award number: 1300286)
文摘Foamed asphalt typically relies on water as a foaming agent because water becomes gaseous at elevated temperatures, generating numerous tiny bubbles in the asphalt and causing spontaneous foaming. In this study, ethanol was used as a potential alternative to water as a foaming agent. Ethanol is expected to be a physical blowing agent in the same manner as water, except it requires less energy to foam due to its 78 ℃ boiling point. This study compares the performance of water and ethanol as foaming agents through the measurements of rotational viscosity, the reduction in temperature during foaming, and volatile loss. The ethanol-foamed asphalt binders were prepared at 80 ~C and 100 ~C, while the water-foamed asphalt binders were prepared at 100 ~C and 120 ~'C. Additionally, the rolling thin film oven (RTFO) was used to generate short-term aging of the foamed asphalt binders. A rotational viscometer was used to determine the viscosity of the asphalt binders at 80 ~C, 100 ~C, 120 ~C, 140 ~C, and 160 ~C. Overall, ethanol can function in the same manner as water but requires less energy to foam. It is proven based on the smaller drop in temperature of the asphalt binder foamed using ethanol compared with that prepared with water. This is due to the lower latent heat capacity of ethanol, which requires less energy to vaporize compared with water. Through the rotational viscometer test, ethanol performs better in lowering the viscosity of asphalt binders, which is essential in allowing produc- tion processes at low temperatures, as well as a better workability and aggregate coating. Ethanol can be expelled from the foamed asphalt binders at a higher rate due to its lower boiling point and latent heat.
文摘The tremendous and consistent increase in the volume and heterogeneity of traffic has resulted in major innovations in the telecommunication networks.In regard to the optical networks,existing studies have shown that by adopting a mixed line rate(MLR)strategy,the wavelength division multiplexed optical networks can cost-effectively respond to the diverse variety of traffic requirements which have heterogeneous service demands.Unlike existing studies which focus on various MLR network issues by considering deployment of the standard single mode fiber only within the network,in the current work,we investigate the signal quality deterioration due to the combined effects of dominant physical layer impairments for an MLR optical network conforming to the various ITU-T compliant fibers and also considering the optical frequency grid based on ITU-T Recommendation G.692.The main aim of our current study is to identify,for a given fiber,the modulation format configuration which provides the highest performance.We conduct extensive simulations on the considered MLR system using the obtained optimum channel spacing values between the single and mixed line rates.Our results show that the existence of 10 Gbit/s line rate has a detrimental effect on the 40 Gbit/s and/or 100 Gbit/s line rate;however,the 40 Gbit/s and/or 100 Gbit/s line rate’s effect on a 10 Gbit/s line rate is not so detrimental,as well as between the similar line rates.Overall,our results clearly show that choice of the line rate of both,the central channel and its adjacent channels,has a major effect on the MLR network performance.