期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Probabilistic seismic inversion based on physics-guided deep mixture density network
1
作者 Qian-Hao Sun Zhao-Yun Zong Xin Li 《Petroleum Science》 SCIE EI CAS 2024年第3期1611-1631,共21页
Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learn... Deterministic inversion based on deep learning has been widely utilized in model parameters estimation.Constrained by logging data,seismic data,wavelet and modeling operator,deterministic inversion based on deep learning can establish nonlinear relationships between seismic data and model parameters.However,seismic data lacks low-frequency and contains noise,which increases the non-uniqueness of the solutions.The conventional inversion method based on deep learning can only establish the deterministic relationship between seismic data and parameters,and cannot quantify the uncertainty of inversion.In order to quickly quantify the uncertainty,a physics-guided deep mixture density network(PG-DMDN)is established by combining the mixture density network(MDN)with the deep neural network(DNN).Compared with Bayesian neural network(BNN)and network dropout,PG-DMDN has lower computing cost and shorter training time.A low-frequency model is introduced in the training process of the network to help the network learn the nonlinear relationship between narrowband seismic data and low-frequency impedance.In addition,the block constraints are added to the PG-DMDN framework to improve the horizontal continuity of the inversion results.To illustrate the benefits of proposed method,the PG-DMDN is compared with existing semi-supervised inversion method.Four synthetic data examples of Marmousi II model are utilized to quantify the influence of forward modeling part,low-frequency model,noise and the pseudo-wells number on inversion results,and prove the feasibility and stability of the proposed method.In addition,the robustness and generality of the proposed method are verified by the field seismic data. 展开更多
关键词 Deep learning Probabilistic inversion Physics-guided Deep mixture density network
下载PDF
Improved pruning algorithm for Gaussian mixture probability hypothesis density filter 被引量:7
2
作者 NIE Yongfang ZHANG Tao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2018年第2期229-235,共7页
With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ... With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones. 展开更多
关键词 Gaussian mixture probability hypothesis density(GM-PHD) filter pruning algorithm proximity targets clutter rate
下载PDF
A Harmonic Approach to Handwriting Style Synthesis Using Deep Learning
3
作者 Mahatir Ahmed Tusher Saket Choudary Kongara +2 位作者 Sagar Dhanraj Pande Seong Ki Kim Salil Bharany 《Computers, Materials & Continua》 SCIE EI 2024年第6期4063-4080,共18页
The challenging task of handwriting style synthesis requires capturing the individuality and diversity of human handwriting.The majority of currently available methods use either a generative adversarial network(GAN)o... The challenging task of handwriting style synthesis requires capturing the individuality and diversity of human handwriting.The majority of currently available methods use either a generative adversarial network(GAN)or a recurrent neural network(RNN)to generate new handwriting styles.This is why these techniques frequently fall short of producing diverse and realistic text pictures,particularly for terms that are not commonly used.To resolve that,this research proposes a novel deep learning model that consists of a style encoder and a text generator to synthesize different handwriting styles.This network excels in generating conditional text by extracting style vectors from a series of style images.The model performs admirably on a range of handwriting synthesis tasks,including the production of text that is out-of-vocabulary.It works more effectively than previous approaches by displaying lower values on key Generative Adversarial Network evaluation metrics,such Geometric Score(GS)(3.21×10^(-5))and Fréchet Inception Distance(FID)(8.75),as well as text recognition metrics,like Character Error Rate(CER)and Word Error Rate(WER).A thorough component analysis revealed the steady improvement in image production quality,highlighting the importance of specific handwriting styles.Applicable fields include digital forensics,creative writing,and document security. 展开更多
关键词 Recurrent neural network generative adversarial network style encoder fréchet inception distance geometric score character error rate mixture density network word error rate
下载PDF
Disordered packing density of binary and polydisperse mixtures of curved spherocylinders 被引量:1
4
作者 Lingyi Meng Shuixiang Li 《Particuology》 SCIE EI CAS CSCD 2017年第3期73-81,共9页
Particle elongation is an important factor affecting the packing properties of rod-like particles. However, rod-like particles can be easily bent into non-convex shapes, in which the effect of bending should also be o... Particle elongation is an important factor affecting the packing properties of rod-like particles. However, rod-like particles can be easily bent into non-convex shapes, in which the effect of bending should also be of concerned, To explore the shape effects of elongation and bending, together with the size and volume fraction effects on the disordered packing density of mixtures of non-convex particles, binary and polydisperse mixtures of curved spherocylinders are simulated employing sphere assembly models and the relaxation algorithm in the present work. For binary packings with the same volume, curves of the packing density versus volume fraction have good linearity, while densities are plotted as a series of equidistant curves under the condition of the same shape. The independence of size and shape effects on the packing density is verified for mixtures of curved spherocylinders. The explicit formula used to predict the density of binary mixtures, by superposing the two independent functions of the size and shape parameters, is extended to include a non-convex shape factor. A polydisperse packing with the shape factor following a uniform distribution under the condition of the same volume is equivalent to a binary mixture with certain components. The packing density is thus predicted as the mean of maximum and minimum densities employing a weighing method. 展开更多
关键词 Disordered packing Packing density mixture Curved spherocylinder Non-convex particle
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部