期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model 被引量:1
1
作者 周亚同 樊煜 +1 位作者 陈子一 孙建成 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第5期22-26,共5页
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au... The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning. 展开更多
关键词 GPM Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM learning of the Gaussian Process mixture Model EM SHC
下载PDF
Adaptive learning rate GMM for moving object detection in outdoor surveillance for sudden illumination changes 被引量:1
2
作者 HOCINE Labidi 曹伟 +2 位作者 丁庸 张笈 罗森林 《Journal of Beijing Institute of Technology》 EI CAS 2016年第1期145-151,共7页
A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence... A dynamic learning rate Gaussian mixture model(GMM)algorithm is proposed to deal with the problem of slow adaption of GMM in the case of moving object detection in the outdoor surveillance,especially in the presence of sudden illumination changes.The GMM is mostly used for detecting objects in complex scenes for intelligent monitoring systems.To solve this problem,a mixture Gaussian model has been built for each pixel in the video frame,and according to the scene change from the frame difference,the learning rate of GMM can be dynamically adjusted.The experiments show that the proposed method gives good results with an adaptive GMM learning rate when we compare it with GMM method with a fixed learning rate.The method was tested on a certain dataset,and tests in the case of sudden natural light changes show that our method has a better accuracy and lower false alarm rate. 展开更多
关键词 object detection background modeling Gaussian mixture model(GMM) learning rate frame difference
下载PDF
An algorithm for trajectory prediction of flight plan based on relative motion between positions 被引量:7
3
作者 Yi LIN Jian-wei ZHANG Hong LIU 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第7期905-916,共12页
Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical f... Traditional methods for plan path prediction have low accuracy and stability. In this paper, we propose a novel approach for plan path prediction based on relative motion between positions(RMBP) by mining historical flight trajectories. A probability statistical model is introduced to model the stochastic factors during the whole flight process. The model object is the sequence of velocity vectors in the three-dimensional Earth space. First, we model the moving trend of aircraft including the speed(constant, acceleration, or deceleration), yaw(left, right, or straight), and pitch(climb, descent, or cruise) using a hidden Markov model(HMM) under the restrictions of aircraft performance parameters. Then, several Gaussian mixture models(GMMs) are used to describe the conditional distribution of each moving trend. Once the models are built, machine learning algorithms are applied to obtain the optimal parameters of the model from the historical training data. After completing the learning process, the velocity vector sequence of the flight is predicted by the proposed model under the Bayesian framework, so that we can use kinematic equations, depending on the moving patterns, to calculate the flight position at every radar acquisition cycle. To obtain higher prediction accuracy, a uniform interpolation method is used to correct the predicted position each second. Finally, a plan trajectory is concatenated by the predicted discrete points. Results of simulations with collected data demonstrate that this approach not only fulfils the goals of traditional methods, such as the prediction of fly-over time and altitude of waypoints along the planned route, but also can be used to plan a complete path for an aircraft with high accuracy. Experiments are conducted to demonstrate the superiority of this approach to some existing methods. 展开更多
关键词 Velocity vector Hidden Markov model Gaussian mixture model Machine learning Plan path prediction Relative motion between positions(RMBP)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部