Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running o...Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.展开更多
Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper...Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.展开更多
Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patte...Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.展开更多
Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery ...Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.展开更多
Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in re...The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.展开更多
In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one c...In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.展开更多
This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of t...This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.展开更多
Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of win...Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains.展开更多
BACKGROUND Running is a hugely popular sport.Unfortunately,running-related injury(RRI)rates are high,particularly amongst amateur and recreational runners.Finding ways to reduce RRI rates and maximise comfort and perf...BACKGROUND Running is a hugely popular sport.Unfortunately,running-related injury(RRI)rates are high,particularly amongst amateur and recreational runners.Finding ways to reduce RRI rates and maximise comfort and performance for runners is important.Evidence regarding whether orthotics can successfully improve these parameters is limited and contradicting.Further research is required to provide runners with clearer guidance on the usefulness of orthotics.AIM To investigate the effect of Aetrex Orthotics on comfort,speed and RRI rates during recreational running.METHODS One hundred and six recreational runners were recruited on a voluntary basis via running clubs and social media pages and randomised into either the intervention or control group.Participants in the intervention group ran with Aetrex L700 Speed Orthotics inserted in their usual running shoes,whilst participants in the control group ran in their usual running shoes with no orthotics.The study ran for an 8-wk period.Participants provided data relating to running comfort,distance,and time during weeks 3-6.Participants provided data relating to any RRIs they sustained during all 8 wks.Running distance and time were used to calculate running speed in miles per hour(mph).For each outcome variable,95%confidence intervals and P values were calculated to assess the statistical significance between the groups.For comfort and speed data,univariate multi-level analysis was performed,and for outcome variables with significant between group differences,multi-level multivariate analysis was performed to evaluate any confounding effects of gender and age.RESULTS Ninety-four participants were included in the final analysis(drop-out rate=11%).Comfort and speed from 940 runs and 978 injury data reports were analysed.Participants who ran with orthotics reported,on average,speeds 0.30 mph faster(P=0.20)and comfort scores 1.27 points higher(P≤0.001)than participants who ran with no orthotics.They were also 2.22 times less likely to sustain an injury(P=0.08)than participants who ran with no orthotics.However,findings were only significant for comfort and not for speed or injury rates.Age and gender were found to be significant predictors of comfort.However,the improvements in comfort reported by participants who ran with orthotics were still significant after adjusting for age and gender.CONCLUSION This study found orthotics to improve comfort and speed and prevent RRIs whilst running.However,these findings were only statistically significant for comfort.展开更多
Exposed to the natural light-dark cycle,24 h rhythms exist in behavioral and physiological processes of living beings.Interestingly,under constant darkness or constant light,living beings can maintain a robust endogen...Exposed to the natural light-dark cycle,24 h rhythms exist in behavioral and physiological processes of living beings.Interestingly,under constant darkness or constant light,living beings can maintain a robust endogenous rhythm with a free running period(FRP)close to 24 h.In mammals,the circadian rhythm is coordinated by a master clock located in the suprachiasmatic nucleus(SCN)of the brain,which is composed of about twenty thousand self-oscillating neurons.These SCN neurons form a heterogenous network to output a robust rhythm.Thus far,the exact network topology of the SCN neurons is unknown.In this article,we examine the effect of the SCN network structure on the FRP when exposed to constant light by a Poincare model.Four typical network structures are considered,including a nearest-neighbor coupled network,a Newman-Watts small world network,an Erd¨os-Renyi random network and a Barabasi-Albert(BA)scale free network.The results show that the FRP is longest in the BA network,because the BA network is characterized by the most heterogeneous structure among these four types of networks.These findings are not affected by the average node degree of the SCN network or the value of relaxation rate of the SCN neuronal oscillators.Our findings contribute to the understanding of how the network structure of the SCN neurons influences the FRP.展开更多
In this note, we first derive an exponential generating function of the alternating run polynomials. We then deduce an explicit formula of the alternating run polynomials in terms of the partial Bell polynomials.
The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable f...The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation.展开更多
The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the a...The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.展开更多
This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations....This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations.Three-dimensional large deformation finite element(LDFE)analyses were conducted to retrospectively analyze the incidents,considering the remoulding of seabed soil and degradation of the pile-soil interface in the LDFE modeling.By comparing the field observations with the LDFE analysis,the mechanism of pile running was discussed,with a focus on investigating the pile penetration resistance in each layer.The study revealed that pile running in layered soils primarily resulted from a significant reduction in pile base resistance when transitioning from a strong layer to an adjacent weak layer.To further investigate the pile running mechanism in layered soils,a parametric study on the strength variation of adjacent soil layers and its influence on pile base resistance was conducted.Lastly,a simplified prediction model of pile base resistance,suitable for assessing the risk of pile running in layered soils,was proposed.展开更多
A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider int...A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.展开更多
基金sponsored by National Natural Science Foundation of China (81800703 and 81970701)Beijing Nova Program (Z201100006820117 and 20220484181)+7 种基金Beijing Municipal Natural Science Foundation (7184252 and 7214258)the Fundamental Research Funds for the Central Universitiesthe Fundamental Research Funds for the Central Universities (BMU2021MX013)Peking University Clinical Scientist Training Program (BMU2023PYJH022)China Endocrine and Metabolism Young Scientific Talent Research Project (2022-N-02-01)Peking University Medicine Seed Fund for Interdisciplinary ResearchChina Diabetes Young Scientific Talent Research ProjectBethune-Merck Diabetes Research Fund of Bethune Charitable Foundation (G2018030)。
文摘Exercise training is critical for the early prevention and treatment of obesity and diabetes mellitus.However,the mechanism with gut microbiota and fecal metabolites underlying the effects of voluntary wheel running on high-fat diet induced abnormal glucose metabolism has not been fully elaborated.C57BL/6 male mice were randomly assigned to 4 groups according to diets(fed with normal chow diet or high-fat diet)and running paradigm(housed in static cage or with voluntary running wheel).An integrative 16S rDNA sequencing and metabolites profiling was synchronously performed to characterize the effects of voluntary wheel running on gut microbiota and metabolites.It showed that voluntary wheel running prevented the detrimental effects of high-fat feeding on glucose metabolism 16S rDNA sequencing showed remarkable changes in Rikenella and Marvinbryantia genera.Metabolic profiling indicated multiple altered metabolites,which were enriched in secondary bile acid biosynthesis signaling.In conclusion,our study indicated that voluntary wheel running significantly improved glucose metabolism and counteracted the deleterious effects of high-fat feeding on body weight and glucose intolerance.We further found that voluntary wheel running could integratively program gut microbiota composition and fecal metabolites changes,and may regulate muricholic acid metabolism and secondary bile acid biosynthesis in high-fat fed mice.
基金Projects(52022113,52278546)supported by the National Natural Science Foundation of ChinaProject(2020EEEVL0403)supported by the China Earthquake Administration。
文摘Sudden earthquakes pose a threat to the running safety of trains on high-speed railway bridges,and the stiffness of piers is one of the factors affecting the dynamic response of train-track-bridge system.In this paper,a experiment of a train running on a high-speed railway bridge is performed based on a dynamic experiment system,and the corresponding numerical model is established.The reliability of the numerical model is verified by experiments.Then,the experiment and numerical data are analyzed to reveal the pier height effects on the running safety of trains on bridges.The results show that when the pier height changes,the frequency of the bridge below the 30 m pier height changes greater;the increase of pier height causes the transverse fundamental frequency of the bridge close to that of the train,and the shaking angle and lateral displacement of the train are the largest for bridge with 50 m pier,which increases the risk of derailment;with the pier height increases from 8 m to 50 m,the derailment coefficient obtained by numerical simulations increases by 75% on average,and the spectral intensity obtained by experiments increases by 120% on average,two indicators exhibit logarithmic variation.
基金provided by the National Natural Science Foundation of China(Grants No.12272238 and No.11932013)the"Outstanding Young Scholar"Program of Shanghai Municipalthe"Dawn"Program of Shanghai Education Commission(Grant No.19SG47)。
文摘Background:Foot kinematics,such as excessive eversion and malalignment of the hindfoot,are believed to be associated with running-related injuries.The maj ority of studies to date show that different foot strike patterns influence these specific foot and ankle kinematics.However,technical deficiencies in traditional motion capture approaches limit knowledge of in vivo joint kinematics with respect to rearfoot and forefoot strike patterns(RFS and FFS,respectively).This study uses a high-speed dual fluoroscopic imaging system(DFIS)to determine the effects of different foot strike patterns on 3D in vivo tibiotalar and subtalar joints kinematics.Methods:Fifteen healthy male recreational runners underwent foot computed tomography scanning for the construction of 3-dimensional models.A high-speed DFIS(100 Hz)was used to collect 6 degrees of freedom kinematics for participants’tibiotalar and subtalar joints when they adopted RFS and FFS in barefoot condition.Results:Compared with RFS,FFS exhibited greater internal rotation at 0%-20%of the stance phase in the tibiotalar joint.The peak internal rotation angle of the tibiotalar joint under FFS was greater than under RFS(p<0.001,Cohen’s d=0.92).RFS showed more dorsiflexion at 0%-20%of the stance phase in the tibiotalar joint than FFS.RFS also presented a larger anterior translation(p<0.001,Cohen’s d=1.28)in the subtalar joint at i nitial contact than FFS.Conclusion:Running with acute barefoot FFS increases the internal rotation of the tibiotalar joint in the early stance.The use of high-speed DFIS to quantify the movement of the tibiotalar and subtalar joint was critical to revealing the effects of RF S and FFS during running.
基金supported by the NIH (R01NS103481, R01NS111776, and R01NS131489)Indiana Department of Health (ISDH58180)(all to WW)。
文摘Spinal cord injury necessitates effective rehabilitation strategies, with exercise therapies showing promise in promoting recovery. This study investigated the impact of rehabilitation exercise on functional recovery and morphological changes following thoracic contusive spinal cord injury. After a 7-day recovery period after spinal cord injury, mice were assigned to either a trained group(10 weeks of voluntary running wheel or forced treadmill exercise) or an untrained group. Bi-weekly assessments revealed that the exercise-trained group, particularly the voluntary wheel exercise subgroup, displayed significantly improved locomotor recovery, more plasticity of dopaminergic and serotonin modulation compared with the untrained group. Additionally, exercise interventions led to gait pattern restoration and enhanced transcranial magnetic motor-evoked potentials. Despite consistent injury areas across groups, exercise training promoted terminal innervation of descending axons. In summary, voluntary wheel exercise shows promise for enhancing outcomes after thoracic contusive spinal cord injury, emphasizing the role of exercise modality in promoting recovery and morphological changes in spinal cord injuries. Our findings will influence future strategies for rehabilitation exercises, restoring functional movement after spinal cord injury.
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
文摘The governmental electric utility and the private sector are joining hands to meet the target of electrifying all households by 2024.However,the aforementioned goal is challenged by households that are scattered in remote areas.So far,Solar Home Systems(SHS)have mostly been applied to increase electricity access in rural areas.SHSs have continuous constraints to meet electricity demands and cannot run income-generating activities.The current research presents the feasibility study of electrifying Remera village with the smart microgrid as a case study.The renewable energy resources available in Remera are the key sources of electricity in that village.The generation capacity is estimated based on the load profile.The microgrid configurations are simulated with HOMER,and the genetic algorithm is used to analyze the optimum cost.By analyzing the impact of operation and maintenance costs,the results show that the absence of subsidies increases the levelized cost of electricity(COE)five times greater than the electricity price from the public utility.The microgrid made up of PV,diesel generator,and batteries proved to be the most viable solution and ensured continuous power supply to customers.By considering the subsidies,COE reaches 0.186$/kWh,a competitive price with electricity from public utilities in Rwanda.
文摘In order to convey complete meanings,there is a phenomenon in Chinese of using multiple running sentences.Xu Jingning(2023,p.66)states,“In communication,a complete expression of meaning often requires more than one clause,which is common in human languages.”Domestic research on running sentences includes discussions on defining the concept and structural features of running sentences,sentence properties,sentence pattern classifications and their criteria,as well as issues related to translating running sentences into English.This article primarily focuses on scholarly research into the English translation of running sentences in China,highlighting recent achievements and identifying existing issues in the study of running sentence translation.However,by reviewing literature on the translation of running sentences,it is found that current research in the academic community on non-core running sentences is limited.Therefore,this paper proposes relevant strategies to address this issue.
基金the Science,Research and Innovation Promotion Funding(TSRI)(Grant No.FRB660012/0168)managed under Rajamangala University of Technology Thanyaburi(FRB66E0646O.4).
文摘This study presents the design of a modified attributed control chart based on a double sampling(DS)np chart applied in combination with generalized multiple dependent state(GMDS)sampling to monitor the mean life of the product based on the time truncated life test employing theWeibull distribution.The control chart developed supports the examination of the mean lifespan variation for a particular product in the process of manufacturing.Three control limit levels are used:the warning control limit,inner control limit,and outer control limit.Together,they enhance the capability for variation detection.A genetic algorithm can be used for optimization during the in-control process,whereby the optimal parameters can be established for the proposed control chart.The control chart performance is assessed using the average run length,while the influence of the model parameters upon the control chart solution is assessed via sensitivity analysis based on an orthogonal experimental design withmultiple linear regression.A comparative study was conducted based on the out-of-control average run length,in which the developed control chart offered greater sensitivity in the detection of process shifts while making use of smaller samples on average than is the case for existing control charts.Finally,to exhibit the utility of the developed control chart,this paper presents its application using simulated data with parameters drawn from the real set of data.
基金supported by the Research Major Project of China Academy of Railway Sciences Group Co.,Ltd(Grant No.2021YJ270)the China National Railway Group Science and Technology Program(Grant No.N2022T001).
文摘Purpose-Express freight transportation is in rapid development currently.Owing to the higher speed of express freight train,the deformation of the bridge deck worsens the railway line condition under the action of wind and train moving load when the train runs over a long-span bridge.Besides,the blunt car body of vehicle has poor aerodynamic characteristics,bringing a greater challenge on the running stability in the crosswind.Design/methodology/approach-In this study,the aerodynamic force coefficients of express freight vehicles on the bridge are measured by scale model wind tunnel test.The dynamic model of the train-long-span steel truss bridge coupling system is established,and the dynamic response as well as the running safety of vehicle are evaluated.Findings-The results show that wind speed has a significant influence on running safety,which is mainly reflected in the over-limitation of wheel unloading rate.The wind speed limit decreases with train speed,and it reduces to 18.83 m/s when the train speed is 160 km/h.Originality/value-This study deepens the theoretical understanding of the interaction between vehicles and bridges and proposes new methods for analyzing similar engineering problems.It also provides a new theoretical basis for the safety assessment of express freight trains.
基金Supported by Aetrex,Inc.414 Alfred Avenue Teaneck,NJ 07666,USA。
文摘BACKGROUND Running is a hugely popular sport.Unfortunately,running-related injury(RRI)rates are high,particularly amongst amateur and recreational runners.Finding ways to reduce RRI rates and maximise comfort and performance for runners is important.Evidence regarding whether orthotics can successfully improve these parameters is limited and contradicting.Further research is required to provide runners with clearer guidance on the usefulness of orthotics.AIM To investigate the effect of Aetrex Orthotics on comfort,speed and RRI rates during recreational running.METHODS One hundred and six recreational runners were recruited on a voluntary basis via running clubs and social media pages and randomised into either the intervention or control group.Participants in the intervention group ran with Aetrex L700 Speed Orthotics inserted in their usual running shoes,whilst participants in the control group ran in their usual running shoes with no orthotics.The study ran for an 8-wk period.Participants provided data relating to running comfort,distance,and time during weeks 3-6.Participants provided data relating to any RRIs they sustained during all 8 wks.Running distance and time were used to calculate running speed in miles per hour(mph).For each outcome variable,95%confidence intervals and P values were calculated to assess the statistical significance between the groups.For comfort and speed data,univariate multi-level analysis was performed,and for outcome variables with significant between group differences,multi-level multivariate analysis was performed to evaluate any confounding effects of gender and age.RESULTS Ninety-four participants were included in the final analysis(drop-out rate=11%).Comfort and speed from 940 runs and 978 injury data reports were analysed.Participants who ran with orthotics reported,on average,speeds 0.30 mph faster(P=0.20)and comfort scores 1.27 points higher(P≤0.001)than participants who ran with no orthotics.They were also 2.22 times less likely to sustain an injury(P=0.08)than participants who ran with no orthotics.However,findings were only significant for comfort and not for speed or injury rates.Age and gender were found to be significant predictors of comfort.However,the improvements in comfort reported by participants who ran with orthotics were still significant after adjusting for age and gender.CONCLUSION This study found orthotics to improve comfort and speed and prevent RRIs whilst running.However,these findings were only statistically significant for comfort.
基金the National Natural Science Foundation of China(Grant Nos.12275179 and 11875042)the Natural Science Foundation of Shanghai(Grant No.21ZR1443900)。
文摘Exposed to the natural light-dark cycle,24 h rhythms exist in behavioral and physiological processes of living beings.Interestingly,under constant darkness or constant light,living beings can maintain a robust endogenous rhythm with a free running period(FRP)close to 24 h.In mammals,the circadian rhythm is coordinated by a master clock located in the suprachiasmatic nucleus(SCN)of the brain,which is composed of about twenty thousand self-oscillating neurons.These SCN neurons form a heterogenous network to output a robust rhythm.Thus far,the exact network topology of the SCN neurons is unknown.In this article,we examine the effect of the SCN network structure on the FRP when exposed to constant light by a Poincare model.Four typical network structures are considered,including a nearest-neighbor coupled network,a Newman-Watts small world network,an Erd¨os-Renyi random network and a Barabasi-Albert(BA)scale free network.The results show that the FRP is longest in the BA network,because the BA network is characterized by the most heterogeneous structure among these four types of networks.These findings are not affected by the average node degree of the SCN network or the value of relaxation rate of the SCN neuronal oscillators.Our findings contribute to the understanding of how the network structure of the SCN neurons influences the FRP.
文摘In this note, we first derive an exponential generating function of the alternating run polynomials. We then deduce an explicit formula of the alternating run polynomials in terms of the partial Bell polynomials.
文摘The upgrading of diesel oil to produce ethylene rich cracking feedstock is an important and promising technical route to reduce the ratio of diesel to gasoline. In the present work, a hydrocracking catalyst suitable for selective hydrocracking of straight run diesel oil to produce high-quality ethylene cracking feedstock at low cost was developed, by optimizing the composition of catalyst support materials, using amorphous silicon aluminum and aluminum oxide with high mesopore content as the main support, and modified Y zeolite with excellent aromatic ring opening selectivity as the acidic component. The catalyst has in-depth characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, N<sub>2</sub>-low temperature adsorption-desorption, NH<sub>3</sub>-temperature-programmed desorption, and IR techniques. And its catalytic cracking straight run diesel oil performance was evaluated. The results show that the prepared catalyst has high polycyclic aromatic hydrocarbon ring opening cracking selectivity. However, alkanes retained in diesel distillates can achieve the goal of producing more ethylene cracking feedstocks with low BMCI value under low and moderate pressure conditions. This work may shed significant technical insight for oil refining transformation.
基金Thailand Science ResearchInnovation Fund,and King Mongkut's University of Technology North Bangkok Contract No.KMUTNB-FF-65-45.
文摘The Extended Exponentially Weighted Moving Average(extended EWMA)control chart is one of the control charts and can be used to quickly detect a small shift.The performance of control charts can be evaluated with the average run length(ARL).Due to the deriving explicit formulas for the ARL on a two-sided extended EWMA control chart for trend autoregressive or trend AR(p)model has not been reported previously.The aim of this study is to derive the explicit formulas for the ARL on a two-sided extended EWMA con-trol chart for the trend AR(p)model as well as the trend AR(1)and trend AR(2)models with exponential white noise.The analytical solution accuracy was obtained with the extended EWMA control chart and was compared to the numer-ical integral equation(NIE)method.The results show that the ARL obtained by the explicit formula and the NIE method is hardly different,but the explicit for-mula can help decrease the computational(CPU)time.Furthermore,this is also expanded to comparative performance with the Exponentially Weighted Moving Average(EWMA)control chart.The performance of the extended EWMA control chart is better than the EWMA control chart for all situations,both the trend AR(1)and trend AR(2)models.Finally,the analytical solution of ARL is applied to real-world data in the healthfield,such as COVID-19 data in the United Kingdom and Sweden,to demonstrate the efficacy of the proposed method.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51879183,51890913)Sino-German Mobility Programme(Grant No.M-0045)。
文摘This paper presents a case study on incidents of offshore pile running in layered soils.The study provides a detailed description of the seabed soil data,pile driving records,and field surveillance video observations.Three-dimensional large deformation finite element(LDFE)analyses were conducted to retrospectively analyze the incidents,considering the remoulding of seabed soil and degradation of the pile-soil interface in the LDFE modeling.By comparing the field observations with the LDFE analysis,the mechanism of pile running was discussed,with a focus on investigating the pile penetration resistance in each layer.The study revealed that pile running in layered soils primarily resulted from a significant reduction in pile base resistance when transitioning from a strong layer to an adjacent weak layer.To further investigate the pile running mechanism in layered soils,a parametric study on the strength variation of adjacent soil layers and its influence on pile base resistance was conducted.Lastly,a simplified prediction model of pile base resistance,suitable for assessing the risk of pile running in layered soils,was proposed.
文摘A newly proposed competent population-based optimization algorithm called RUN,which uses the principle of slope variations calculated by applying the Runge Kutta method as the key search mechanism,has gained wider interest in solving optimization problems.However,in high-dimensional problems,the search capabilities,convergence speed,and runtime of RUN deteriorate.This work aims at filling this gap by proposing an improved variant of the RUN algorithm called the Adaptive-RUN.Population size plays a vital role in both runtime efficiency and optimization effectiveness of metaheuristic algorithms.Unlike the original RUN where population size is fixed throughout the search process,Adaptive-RUN automatically adjusts population size according to two population size adaptation techniques,which are linear staircase reduction and iterative halving,during the search process to achieve a good balance between exploration and exploitation characteristics.In addition,the proposed methodology employs an adaptive search step size technique to determine a better solution in the early stages of evolution to improve the solution quality,fitness,and convergence speed of the original RUN.Adaptive-RUN performance is analyzed over 23 IEEE CEC-2017 benchmark functions for two cases,where the first one applies linear staircase reduction with adaptive search step size(LSRUN),and the second one applies iterative halving with adaptive search step size(HRUN),with the original RUN.To promote green computing,the carbon footprint metric is included in the performance evaluation in addition to runtime and fitness.Simulation results based on the Friedman andWilcoxon tests revealed that Adaptive-RUN can produce high-quality solutions with lower runtime and carbon footprint values as compared to the original RUN and three recent metaheuristics.Therefore,with its higher computation efficiency,Adaptive-RUN is a much more favorable choice as compared to RUN in time stringent applications.