The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are repro...The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are reproduced well with the assigned configuration eonfig 1. The shears mechanism for magnetic rotation is examined by investigating microscopically the orientation of angular momentum and the corresponding contributions. It is found that config 1 and config 3 correspond to a rotation of high-K character. Config 2 corresponds to a rotation of magnetic character. However, due to the presence of electromagnetic transition B(M1) and B(E2), collective rotation plays an essential role in the competition with magnetic rotation.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11461141002the Open Project Program of State Key Laboratory of Theoretical Physics of Institute of Theoretical Physics of Chinese Academy of Sciences under Grant No Y4KF041CJ1
文摘The self-consistent tilted axis cranking covariant density functional theory based on the point-coupling interaction is applied to investigate the tilted axis rotation in ^57 Mn. The observed data for band C are reproduced well with the assigned configuration eonfig 1. The shears mechanism for magnetic rotation is examined by investigating microscopically the orientation of angular momentum and the corresponding contributions. It is found that config 1 and config 3 correspond to a rotation of high-K character. Config 2 corresponds to a rotation of magnetic character. However, due to the presence of electromagnetic transition B(M1) and B(E2), collective rotation plays an essential role in the competition with magnetic rotation.