The quantization thermal excitation isotherms based on the maximum triad spin number (G) of each energy level for metal cluster were derived as a function of temperature by expanding the binomial theorems according to...The quantization thermal excitation isotherms based on the maximum triad spin number (G) of each energy level for metal cluster were derived as a function of temperature by expanding the binomial theorems according to energy levels. From them the quantized geometric mean heat capacity equations are expressed in sequence. Among them the five quantized geometric heat capacity equations, fit the best to the experimental heat capacity data of metal atoms at constant pressure. In the derivations we assume that the triad spin composed of an electron, its proton and its neutron in a metal cluster become a basic unit of thermal excitation. Boltzmann constant (kB) is found to be an average specific heat of an energy level in a metal cluster. And then the constant (kK) is found to be an average specific heat of a photon in a metal cluster. The core triad spin made of free neutrons may exist as the second one additional energy level. The energy levels are grouped according to the forms of four spins throughout two axes. Planck constant is theoretically obtained with the ratio of the internal energy of metal (U) to total isotherm number (N) through Equipartition theorem.展开更多
Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in ea...Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in each heat capacity vs pressure curve. Intermolecular interaction in the fluids was studied.展开更多
This paper stuides the elastic constants and some thermodynamic properties of Mg2SixSn1-x (x = 0, 0.25, 0.5, 0.75, 1) compounds by first-principles total energy calculations using the pseudo-potential plane-waves ap...This paper stuides the elastic constants and some thermodynamic properties of Mg2SixSn1-x (x = 0, 0.25, 0.5, 0.75, 1) compounds by first-principles total energy calculations using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation for the exchange and correlation potential. The elastic constants of Mg2SixSn1-x were calculated. It shows that, at 273 K, the elastic constants of Mg2Si and Mg2Sn are well consistent with previous experimental data. The isotropy decreases with increasing Sn content. The dependences of the elastic constants, the bulk modulus, the shear modulus and the Debye temperatures of Mg2Si and Mg2Si0.5Sn0.5 on pressure were discussed. Through the quasi-harmonic Debye model, in which phononic effects were considered, the specific heat capacities of Mg2SixSn1-x at constant volume and constant pressure were calculated. The calculated specific heat capacities are well consistent with the previous experimental data.展开更多
This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T=78K to T=400K. A solid ...This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T=78K to T=400K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342-364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol precision oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.展开更多
The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were d...The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.展开更多
With the B3LYP calculation method of density functional theory(DFT)and the 6-31G* basis set,full optimization calculation was made for phenoxathiin10-oxide(PTO)and 135 polybromine phenoxathiin 10-oxides(PBPTOs)...With the B3LYP calculation method of density functional theory(DFT)and the 6-31G* basis set,full optimization calculation was made for phenoxathiin10-oxide(PTO)and 135 polybromine phenoxathiin 10-oxides(PBPTOs)with the Gaussian 03 program and molar heat capacity in constant volume(CVθ)value of each molecule in the standard state was obtained.The relation between CVθ and the substitution position and number of bromine atom(NPBS)was studied,and the results indicated good correlation(R2 = 1.000)between CVθ and NPBS of PBPTO compounds.Based on the output file of Gaussian 03 program,molar heat capacity at constant pressure(Cp,m)of PBPTO compounds from 200 to 1,000 K was calculated with the statistical thermodynamics program,and the correlation equation between Cp,m and temperature(T,T-1 and T-2)was obtained with the least-squares method,and the correlation coefficient of the correlation equation(R2)was 1.000.In addition,based on the partition function of each molecule calculated by vibration analysis,the relative rate constant of formation of each molecule was calculated.展开更多
The gaseous speed of sound, the ideal gas heat capacity at constant pressure, and the second Virial coefficient were determined for pentafluoroethane (HFC 125). A total of 49 data points of speed of sound for gas...The gaseous speed of sound, the ideal gas heat capacity at constant pressure, and the second Virial coefficient were determined for pentafluoroethane (HFC 125). A total of 49 data points of speed of sound for gaseous HFC 125 were measured for temperatures from 273 to 313 K and pressures from 32 to 479 kPa with a cylindrical, variable path acoustic interferometer. The ideal gas heat capacity at constant pressure and the second acoustic Virial coefficient were determined over the temperature range from the speed of sound measurements and were correlated as functions of temperature. An analytical expression for the second Virial coefficient derived using the square well intermolecular potential model was compared with the data.展开更多
The interaction of magnetic colloidal particles includes the interaction of colloidal particles and the interaction of the moment of magnetism.The interaction of the moment of magnetism is regard as perturbation.Accor...The interaction of magnetic colloidal particles includes the interaction of colloidal particles and the interaction of the moment of magnetism.The interaction of the moment of magnetism is regard as perturbation.According to the low density system of magnetic colloidal particles in water,a theoretic model is set up based on perturbation theory.The relations between internal energy,specific heat of magnetic colloidal particles system and temperature,density of colloidal particles are calculated.The calculated results are useful in explaining the magnetic memory effect.展开更多
An equation for the specific heat capacity of liquids which contains four constants hasbeen developed in this paper by means of analysis of data of heat capacities and properties offunction curves and its form is simp...An equation for the specific heat capacity of liquids which contains four constants hasbeen developed in this paper by means of analysis of data of heat capacities and properties offunction curves and its form is simple and convenient for use. It is testified that the equationhas good extrapolating property and so cp values of subcooled liquids which are deficient canbe predicted by that of saturated liquids and vice versa.展开更多
A ternary solid complex Lu(Et2dtc)3(phen) has been obtained from the reaction of hydrated lutetium chloride with sodium diethyldithiocarbamate (NaEt2dtc), and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol....A ternary solid complex Lu(Et2dtc)3(phen) has been obtained from the reaction of hydrated lutetium chloride with sodium diethyldithiocarbamate (NaEt2dtc), and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol. IR spectrum of the complex indicates that Lu3+ binds with sulfur atom in the Na(Et2dtc)3 and nitrogen atom in the o-phen. The enthalpy change of liquid-phase reaction of formation of the complex, △CHM- (l), was determined to be (-32.821 ± 0.147 ) kJ·mol-1 at 298.15 K by an RD-496 Ⅲ type heat conduction microcalormeter. The enthalpy change of the solid-phase reaction of formation of the complex, △CHM- (s), was calculated to be (104.160 ± 0.168) kJ · mol-1 on the basis of an appropriate thermochemistry cycle. The thermodynamics of liquid-phase reaction of formation of the complex was investigated by changing the temperature of liquid-phase reaction. Fundamental parameters, such as the activation enthalpy (△HM-), the activation entropy (?驻SM-), the activation free energy (△GM-), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained by combination the reaction thermodynamic and kinetic equations with the data of thermokinetic experiments. The molar heat capacity of the complex, cm, was determined to be (82.23 ± 1.47) J·mol-1·K-1 by the same microcalormeter. The constant-volume combustion energy of the complex, ΔcU, was determined as (-17 898.228 ± 8.59) kJ·mol-1 by an RBC-Ⅱtype rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, △CHM-, and standard enthalpy of formation, △CHM-, were calculated to be (-17 917.43 ± 8.11) kJ·mol-1 and (-859.95 ±10.12) kJ·mol-1, respectively.展开更多
文摘The quantization thermal excitation isotherms based on the maximum triad spin number (G) of each energy level for metal cluster were derived as a function of temperature by expanding the binomial theorems according to energy levels. From them the quantized geometric mean heat capacity equations are expressed in sequence. Among them the five quantized geometric heat capacity equations, fit the best to the experimental heat capacity data of metal atoms at constant pressure. In the derivations we assume that the triad spin composed of an electron, its proton and its neutron in a metal cluster become a basic unit of thermal excitation. Boltzmann constant (kB) is found to be an average specific heat of an energy level in a metal cluster. And then the constant (kK) is found to be an average specific heat of a photon in a metal cluster. The core triad spin made of free neutrons may exist as the second one additional energy level. The energy levels are grouped according to the forms of four spins throughout two axes. Planck constant is theoretically obtained with the ratio of the internal energy of metal (U) to total isotherm number (N) through Equipartition theorem.
文摘Constant-volume heat capacities of supercritical (SC) CO2, SC CO2-n-pentane, and SC CO2-n-heptane mixtures were determined at 308.15 K in the pressure range from 6 to 12 MPa. It was found that there is a maximum in each heat capacity vs pressure curve. Intermolecular interaction in the fluids was studied.
基金supported by the National Natural Science Foundation of China(Grant No 50504002)China Postdoctoral Science Foundation(Grant No 20060390030)the Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘This paper stuides the elastic constants and some thermodynamic properties of Mg2SixSn1-x (x = 0, 0.25, 0.5, 0.75, 1) compounds by first-principles total energy calculations using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation for the exchange and correlation potential. The elastic constants of Mg2SixSn1-x were calculated. It shows that, at 273 K, the elastic constants of Mg2Si and Mg2Sn are well consistent with previous experimental data. The isotropy decreases with increasing Sn content. The dependences of the elastic constants, the bulk modulus, the shear modulus and the Debye temperatures of Mg2Si and Mg2Si0.5Sn0.5 on pressure were discussed. Through the quasi-harmonic Debye model, in which phononic effects were considered, the specific heat capacities of Mg2SixSn1-x at constant volume and constant pressure were calculated. The calculated specific heat capacities are well consistent with the previous experimental data.
基金Project supported by the National Natural Science Foundation of China (Grant No 20673050).
文摘This paper reports that low-temperature heat capacities of N-methylnorephedrine C11H17NO(s) have been measured by a precision automated adiabatic calorimeter over the temperature range from T=78K to T=400K. A solid to liquid phase transition of the compound was found in the heat capacity curve in the temperature range of T=342-364 K. The peak temperature, molar enthalpy and entropy of fusion of the substance were determined. The experimental values of the molar heat capacities in the temperature regions of T=78-342 K and T=364-400 K were fitted to two poly- nomial equations of heat capacities with the reduced temperatures by least squares method. The smoothed molar heat capacities and thermodynamic functions of N-methylnorephedrine C11H17NO(s) relative to the standard refer- ence temperature 298.15 K were calculated based on the fitted polynomials and tabulated with an interval of 5 K. The constant-volume energy of combustion of the compound at T=298.15 K was measured by means of an isoperibol precision oxygen-bomb combustion calorimeter. The standard molar enthalpy of combustion of the sample was calculated. The standard molar enthalpy of formation of the compound was determined from the combustion enthalpy and other auxiliary thermodynamic data through a Hess thermochemical cycle.
基金Supported by the NNSFC (20737001, 20977046)NSF of Zhejiang Province (2008Y507280)
文摘The thermodynamic properties of xanthone(XTH) and 135 polybrominated xanthones(PBXTHs) in the standard state have been calculated at the B3LYP/6-31G* level using Gaussian 03 program.The isodesmic reactions were designed to calculate the standard enthalpy of formation(△fHθ) and standard free energy of formation(△fGθ) of PBXTH congeners.The relations of these thermodynamic parameters with the number and position of Br atom substitution(NPBS) were discussed,and it was found that there exist high correlation between thermodynamic parameters(entropy(Sθ),△fHθ and △fGθ) and NPBS.According to the relative magnitude of their △fGθ,the relative stability order of PBXTH congeners was theoretically proposed.The relative rate constants of formation reactions of PBXTH congeners were calculated,Moreover,the values of molar heat capacity at constant pressure(Cp,m) from 200 to 1000 K for PBXTH congeners were also calculated,and the temperature dependence relation of them was obtained,suggesting very good relationships between Cp,m and temperature(T,T^1 and T^2) for almost all PBXTH congeners.
基金supported by the National Natural Science Foundation of China (41071319,20977046 and 20737001)
文摘With the B3LYP calculation method of density functional theory(DFT)and the 6-31G* basis set,full optimization calculation was made for phenoxathiin10-oxide(PTO)and 135 polybromine phenoxathiin 10-oxides(PBPTOs)with the Gaussian 03 program and molar heat capacity in constant volume(CVθ)value of each molecule in the standard state was obtained.The relation between CVθ and the substitution position and number of bromine atom(NPBS)was studied,and the results indicated good correlation(R2 = 1.000)between CVθ and NPBS of PBPTO compounds.Based on the output file of Gaussian 03 program,molar heat capacity at constant pressure(Cp,m)of PBPTO compounds from 200 to 1,000 K was calculated with the statistical thermodynamics program,and the correlation equation between Cp,m and temperature(T,T-1 and T-2)was obtained with the least-squares method,and the correlation coefficient of the correlation equation(R2)was 1.000.In addition,based on the partition function of each molecule calculated by vibration analysis,the relative rate constant of formation of each molecule was calculated.
基金Supported by the National Natural Science Foundation of China( No. 5 990 60 0 6)
文摘The gaseous speed of sound, the ideal gas heat capacity at constant pressure, and the second Virial coefficient were determined for pentafluoroethane (HFC 125). A total of 49 data points of speed of sound for gaseous HFC 125 were measured for temperatures from 273 to 313 K and pressures from 32 to 479 kPa with a cylindrical, variable path acoustic interferometer. The ideal gas heat capacity at constant pressure and the second acoustic Virial coefficient were determined over the temperature range from the speed of sound measurements and were correlated as functions of temperature. An analytical expression for the second Virial coefficient derived using the square well intermolecular potential model was compared with the data.
文摘The interaction of magnetic colloidal particles includes the interaction of colloidal particles and the interaction of the moment of magnetism.The interaction of the moment of magnetism is regard as perturbation.According to the low density system of magnetic colloidal particles in water,a theoretic model is set up based on perturbation theory.The relations between internal energy,specific heat of magnetic colloidal particles system and temperature,density of colloidal particles are calculated.The calculated results are useful in explaining the magnetic memory effect.
文摘An equation for the specific heat capacity of liquids which contains four constants hasbeen developed in this paper by means of analysis of data of heat capacities and properties offunction curves and its form is simple and convenient for use. It is testified that the equationhas good extrapolating property and so cp values of subcooled liquids which are deficient canbe predicted by that of saturated liquids and vice versa.
文摘A ternary solid complex Lu(Et2dtc)3(phen) has been obtained from the reaction of hydrated lutetium chloride with sodium diethyldithiocarbamate (NaEt2dtc), and 1,10-phenanthroline (o-phen·H2O) in absolute ethanol. IR spectrum of the complex indicates that Lu3+ binds with sulfur atom in the Na(Et2dtc)3 and nitrogen atom in the o-phen. The enthalpy change of liquid-phase reaction of formation of the complex, △CHM- (l), was determined to be (-32.821 ± 0.147 ) kJ·mol-1 at 298.15 K by an RD-496 Ⅲ type heat conduction microcalormeter. The enthalpy change of the solid-phase reaction of formation of the complex, △CHM- (s), was calculated to be (104.160 ± 0.168) kJ · mol-1 on the basis of an appropriate thermochemistry cycle. The thermodynamics of liquid-phase reaction of formation of the complex was investigated by changing the temperature of liquid-phase reaction. Fundamental parameters, such as the activation enthalpy (△HM-), the activation entropy (?驻SM-), the activation free energy (△GM-), the apparent reaction rate constant (k), the apparent activation energy (E), the pre-exponential constant (A) and the reaction order (n), were obtained by combination the reaction thermodynamic and kinetic equations with the data of thermokinetic experiments. The molar heat capacity of the complex, cm, was determined to be (82.23 ± 1.47) J·mol-1·K-1 by the same microcalormeter. The constant-volume combustion energy of the complex, ΔcU, was determined as (-17 898.228 ± 8.59) kJ·mol-1 by an RBC-Ⅱtype rotating-bomb calorimeter at 298.15 K. Its standard enthalpy of combustion, △CHM-, and standard enthalpy of formation, △CHM-, were calculated to be (-17 917.43 ± 8.11) kJ·mol-1 and (-859.95 ±10.12) kJ·mol-1, respectively.