Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Ne...Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.展开更多
Mobile commerce uses wireless device and wireless link to result in the transfer of values in exchange of information, services or goods. Wireless mobile ad hoc networks (MANETs) will bring a revolution to the busin...Mobile commerce uses wireless device and wireless link to result in the transfer of values in exchange of information, services or goods. Wireless mobile ad hoc networks (MANETs) will bring a revolution to the business model of mobile commerce if such networks are used as the underlying network technology for mobile commerce. Mobile commerce will remain in a niche market until the security issue is properly addressed. Hence, security is also very important for MANET applications in mobile commerce. Robust key management is one of the most crucial technologies for security of MANETs. In this paper, a new solution for key management is proposed using identity-based (ID-based) signcryption and threshold secret sharing. It enables flexible and efficient key management while respecting the constraints of MANETs. In our solution, each mobile host uses its globally unique identity as its public key. It greatly decreases the computation and storage costs of mobile hosts, as well as communication cost for system key management.展开更多
Wormhole attack is a serious threat against MANET (mobile ad hoc network) and its routing protocols. A new approach—tunnel key node identification (TKNI) was proposed. Based on tunnel-key-node identification and prio...Wormhole attack is a serious threat against MANET (mobile ad hoc network) and its routing protocols. A new approach—tunnel key node identification (TKNI) was proposed. Based on tunnel-key-node identification and priority-based route discovery, TKNI can rapidly rebuild the communications that have been blocked by wormhole attack. Compared to previous approaches, the proposed approach aims at both static and dynamic topology environment, involves addressing visible and invisible wormhole attack modes, requires no extra hardware, has a low overhead, and can be easily applied to MANET.展开更多
Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of secu...Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.展开更多
Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and ...Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.展开更多
One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying que...One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process.展开更多
Firstly, a multilevel trust algorithm for MANET (mobile ad hoe networks) is presented in this paper and the trust level is defined as a three-tuple type in this multilevel trust algorithm. The paper introduces the m...Firstly, a multilevel trust algorithm for MANET (mobile ad hoe networks) is presented in this paper and the trust level is defined as a three-tuple type in this multilevel trust algorithm. The paper introduces the multilevel trust into MANET, thereby controlling restricted classified information flows among nodes that have different trust levels. Secondly, the infrastructure of MANET that suit to our multi-level trust is presented, Some conclusions are given at lastly.展开更多
Mobile Ad-Hoc network is a collection of mobile nodes in communication without using infrastructure. Despite the importance of type of the exchanged data between the knots on the QoS of the MANETs, the mul-tiservice d...Mobile Ad-Hoc network is a collection of mobile nodes in communication without using infrastructure. Despite the importance of type of the exchanged data between the knots on the QoS of the MANETs, the mul-tiservice data were not treated by the larger number of previous researches. In this paper we propose an adaptive method which gives the best performances in terms of delay and throughput. We have studied the impact, respectively, of mobility models and the density of nodes on the performances (End-to-End Delay, Throughput and Packet Delivery ratio) of routing protocol (On-Demand Distance Vector) AODV by using in the first a multiservice VBR (MPEG-4) and secondly the Constant Bit Rate (CBR) traffic. Finally we com-pare the performance on both cases. Experimentally, we considered the three mobility models as follows Random Waypoint, Random Direction and Mobgen Steady-State. The experimental results illustrate that the behavior of AODV change according to the model and the used traffics.展开更多
Mobile Ad Hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the aid of any established infrastructure. To conduct meaningful performance analysis of MANETs, it is essenti...Mobile Ad Hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the aid of any established infrastructure. To conduct meaningful performance analysis of MANETs, it is essential that the simulation of mobility model should reflect the realistic mobility pattern of mobile nodes i.e. placement of mobile nodes at different intervals of time. The formation of spontaneous network depends heavily on the movement of different nodes in a particular practical scenario. This research focuses on the modeling and simulation of a temporal Adaptive Mobility Model which can be adapted to any dynamic practical scenario. The mobility in the realistic environment is simulated based on a Probability Transition Matrix named as Personal Behavior Model (PBM) and validated for a practical Health Care Environment. The formation of MANET is assumed to be based on the movement of the patient i.e. mobile nodes in the health care environment. Patients waiting in front of each service point for different time intervals are taken as results and compared with the actual data.展开更多
A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count ...A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count Constraints Routing Protocol with Mobility Prediction for Mobile Ad hoc Network using Self Healing and Optimizing Routing Technique (QPHMP-SHORT)”. It is a multiple constraints routing protocol with self healing technique for route discovery to select a best routing path among multiple paths between a source and a destination as to increase packet delivery ratio, reliability and efficiency of mobile communication. QPHMP-SHORT considers the cost incurred in channel acquisition and the incremental cost proportional to the size of the packet. It collects the residual battery power of each node for each path;selects multiple paths, which have nodes with good battery power for transmission to satisfy the power constraint. QPHMP-SHORT uses Self-Healing and Optimizing Routing Technique (SHORT) to select a shortest best path among multiple selected paths by applying hops count constraint. It also uses the mobility prediction formula to find the stability of a link between two nodes.展开更多
A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, emplo...A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the lnternet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.展开更多
This paper proposes a connected dominating set (CDS) based mobility management algorithm, CMMA, to solve the problems of node entering, exiting and movement in mobile ad hoc networks (MANETs), which ensures the connec...This paper proposes a connected dominating set (CDS) based mobility management algorithm, CMMA, to solve the problems of node entering, exiting and movement in mobile ad hoc networks (MANETs), which ensures the connectivity and efficiency of the CDS. Compared with Wu's algorithm, the proposed algorithm can make full use of present network conditions and involves fewer nodes. Also it has better performance with regard to the approximation factor, message complexity, and time complexity.展开更多
Mobile Ad Hoc Network (MANET) is a reliable system formed by co-operating and independent nodes that connect and communicate with each other wirelessly without pre-existing infrastructure. In such a network, the easie...Mobile Ad Hoc Network (MANET) is a reliable system formed by co-operating and independent nodes that connect and communicate with each other wirelessly without pre-existing infrastructure. In such a network, the easiest way to broadcast the packets to all network nodes is flooding. However, flooding leads to serious drawbacks such as collision, contention and redundant retransmission. These drawbacks are known as the broadcast storm problem. This research proposes an adaptive algorithm in order to decrease the overall network overhead and minimize the problems associated to flooding. Moreover this research concentrates on studying the effect of using different mobility models that provide general idea about nodes movement, status and locations. In particular the performance of Random Waypoint and File mobility models in terms of their effect on network communication is evaluated. Moreover, this research provides performance evaluation of different traffic types such as Constant Bit Rate (CBR) and Traffic GEN. Results from Qualnet simulations have revealed that the new proposed algorithm outperforms flooding in terms of different metrics: reducing end-to-end delay in addition to minimizing the normalized routing load and maximizing the packets delivery ratio, in addition to concluding that Traffic GEN outperforms the CBR in terms of throughput. Moreover the CBR traffic has higher delay values than Traffic GEN.展开更多
Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for...Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop composed of setup procedure, regular procedure and emergent route recovering. suggests smart route recovery strategy. Our approach is recovery procedure to achieve clustering, routing and展开更多
Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless l...Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless links for communication. Wireless networks are considered more exposed to security attacks as compared to wired networks, especially;MANETs are the soft target due to vulnerable in nature. Lack of infrastructure, open peer to peer connectivity, shared wireless medium, dynamic topology and scalability are the key characteristics of MANETs which make them ideal for security attacks. In this paper, we shall discuss in detail, what does security mean, why MANETs are more susceptible to security attacks than wired networks, taxonomy of network attacks and layer wise analysis of network attacks. Finally, we shall propose solutions to meet the security challenges, according to our framed security criteria.展开更多
Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles th...Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.展开更多
传统TCP(transmission control protocol)本是为有线网络设计,它假设包丢失全是由网络拥塞引起,这个假设不能适应于MANET (mobile ad hoc network),因为MANET 中除了拥塞丢包以外,还存在由于较高比特误码率、路由故障等因素引起的丢包现...传统TCP(transmission control protocol)本是为有线网络设计,它假设包丢失全是由网络拥塞引起,这个假设不能适应于MANET (mobile ad hoc network),因为MANET 中除了拥塞丢包以外,还存在由于较高比特误码率、路由故障等因素引起的丢包现象.当出现非拥塞因素丢包时,传统 TCP 将错误地触发拥塞控制,从而引起TCP 性能低下.任何改进机制都可以分为发现问题和解决问题两个阶段.首先概括了 MANET 中影响 TCP 性能的若干问题;然后针对发现问题和解决问题两个阶段,详细地对每一阶段中存在的各种可行方法进行了分类、分析和比较;最后指出了 MANET 中 TCP 性能优化的研究方向.展开更多
基金the Deanship of Scientific Research at Majmaah University for supporting this work under Project No.R-2024-1008.
文摘Traffic in today’s cities is a serious problem that increases travel times,negatively affects the environment,and drains financial resources.This study presents an Artificial Intelligence(AI)augmentedMobile Ad Hoc Networks(MANETs)based real-time prediction paradigm for urban traffic challenges.MANETs are wireless networks that are based on mobile devices and may self-organize.The distributed nature of MANETs and the power of AI approaches are leveraged in this framework to provide reliable and timely traffic congestion forecasts.This study suggests a unique Chaotic Spatial Fuzzy Polynomial Neural Network(CSFPNN)technique to assess real-time data acquired from various sources within theMANETs.The framework uses the proposed approach to learn from the data and create predictionmodels to detect possible traffic problems and their severity in real time.Real-time traffic prediction allows for proactive actions like resource allocation,dynamic route advice,and traffic signal optimization to reduce congestion.The framework supports effective decision-making,decreases travel time,lowers fuel use,and enhances overall urban mobility by giving timely information to pedestrians,drivers,and urban planners.Extensive simulations and real-world datasets are used to test the proposed framework’s prediction accuracy,responsiveness,and scalability.Experimental results show that the suggested framework successfully anticipates urban traffic issues in real-time,enables proactive traffic management,and aids in creating smarter,more sustainable cities.
基金Supported by the National Natural Science Foun-dation of China (60473021 ,60503012)the Natural Science Foun-dation of Henan Province (511010900)
文摘Mobile commerce uses wireless device and wireless link to result in the transfer of values in exchange of information, services or goods. Wireless mobile ad hoc networks (MANETs) will bring a revolution to the business model of mobile commerce if such networks are used as the underlying network technology for mobile commerce. Mobile commerce will remain in a niche market until the security issue is properly addressed. Hence, security is also very important for MANET applications in mobile commerce. Robust key management is one of the most crucial technologies for security of MANETs. In this paper, a new solution for key management is proposed using identity-based (ID-based) signcryption and threshold secret sharing. It enables flexible and efficient key management while respecting the constraints of MANETs. In our solution, each mobile host uses its globally unique identity as its public key. It greatly decreases the computation and storage costs of mobile hosts, as well as communication cost for system key management.
文摘Wormhole attack is a serious threat against MANET (mobile ad hoc network) and its routing protocols. A new approach—tunnel key node identification (TKNI) was proposed. Based on tunnel-key-node identification and priority-based route discovery, TKNI can rapidly rebuild the communications that have been blocked by wormhole attack. Compared to previous approaches, the proposed approach aims at both static and dynamic topology environment, involves addressing visible and invisible wormhole attack modes, requires no extra hardware, has a low overhead, and can be easily applied to MANET.
基金supported by the National Basic Research Program of China(973 Program)(2011CB302903)the Key Program of Natural Science for Universities of Jiangsu Province(10KJA510035)+2 种基金the Science and Technology Innovation Group Foundation of Jiangsu Province ("Qing and Lan" Project)the Postgraduate Innovation Project Foundation of Jiangsu Province(CX10B 194ZCX09B 152Z)
文摘Because the intrinsic characteristics of mobile ad hoc networks(MANETs) cause several vulnerabilities,anonymous routing protocols attract much more attention in secure mobile ad hoc networks for the purposes of security and privacy concerns.Until recently,lots of anonymous routing protocols have been proposed.However,most of them are single path or use one path at a time,and the multipath schemes can not thwart both the passive attacks and active attacks simultaneously.Thus an anonymous multipath routing protocol based on secret sharing is proposed.The protocol provides identity anonymity,location anonymity,data and traffic anonymity by employing cryptograph technology and secret sharing in MANET communication process.Meanwhile,a hash function is introduced to detect active attacks in the data transmission process.The protocol can effectively thwart various passive attacks and reduce the successful probability of active attacks(such as interception and physical destroy attacks).Simulation results show that the proposed scheme provides a reasonably good level of network security and performance.
基金Project(07JJ1010) supported by the Hunan Provincial Natural Science Foundation of China for Distinguished Young ScholarsProjects(61073037,60773013) supported by the National Natural Science Foundation of China
文摘Most existing work on survivability in mobile ad-hoc networks(MANETs) focuses on two dimensional(2D) networks.However,many real applications run in three dimensional(3D) networks,e.g.,climate and ocean monitoring,and air defense systems.The impact on network survivability due to node behaviors was presented,and a quantitative analysis method on survivability was developed in 3D MANETs by modeling node behaviors and analyzing 3D network connectivity.Node behaviors were modeled by using a semi-Markov process.The node minimum degree of 3D MANETs was discussed.An effective approach to derive the survivability of k-connected networks was proposed through analyzing the connectivity of 3D MANETs caused by node misbehaviors,based on the model of node isolation.The quantitative analysis of node misbehaviors on the survivability in 3D MANETs is obtained through mathematical description,and the effectiveness and rationality of the proposed approach are verified through numerical analysis.The analytical results show that the effect from black and gray attack on network survivability is much severer than other misbehaviors.
文摘One of the key challenges in ad-hoc networks is the resource discovery problem.How efciently&quickly the queried resource/object can be resolved in such a highly dynamic self-evolving network is the underlying question?Broadcasting is a basic technique in the Mobile Ad-hoc Networks(MANETs),and it refers to sending a packet from one node to every other node within the transmission range.Flooding is a type of broadcast where the received packet is retransmitted once by every node.The naive ooding technique oods the network with query messages,while the random walk scheme operates by contacting subsets of each node’s neighbors at every step,thereby restricting the search space.Many earlier works have mainly focused on the simulation-based analysis of ooding technique,and its variants,in a wired network scenario.Although,there have been some empirical studies in peer-to-peer(P2P)networks,the analytical results are still lacking,especially in the context of mobile P2P networks.In this article,we mathematically model different widely used existing search techniques,and compare with the proposed improved random walk method,a simple lightweight approach suitable for the non-DHT architecture.We provide analytical expressions to measure the performance of the different ooding-based search techniques,and our proposed technique.We analytically derive 3 relevant key performance measures,i.e.,the avg.number of steps needed to nd a resource,the probability of locating a resource,and the avg.number of messages generated during the entire search process.
基金Supported by the National Natural Science Foun-dation of China (60372107) Doctoral Innovative Foundation ofJiangsu Province(46666001) .
文摘Firstly, a multilevel trust algorithm for MANET (mobile ad hoe networks) is presented in this paper and the trust level is defined as a three-tuple type in this multilevel trust algorithm. The paper introduces the multilevel trust into MANET, thereby controlling restricted classified information flows among nodes that have different trust levels. Secondly, the infrastructure of MANET that suit to our multi-level trust is presented, Some conclusions are given at lastly.
文摘Mobile Ad-Hoc network is a collection of mobile nodes in communication without using infrastructure. Despite the importance of type of the exchanged data between the knots on the QoS of the MANETs, the mul-tiservice data were not treated by the larger number of previous researches. In this paper we propose an adaptive method which gives the best performances in terms of delay and throughput. We have studied the impact, respectively, of mobility models and the density of nodes on the performances (End-to-End Delay, Throughput and Packet Delivery ratio) of routing protocol (On-Demand Distance Vector) AODV by using in the first a multiservice VBR (MPEG-4) and secondly the Constant Bit Rate (CBR) traffic. Finally we com-pare the performance on both cases. Experimentally, we considered the three mobility models as follows Random Waypoint, Random Direction and Mobgen Steady-State. The experimental results illustrate that the behavior of AODV change according to the model and the used traffics.
文摘Mobile Ad Hoc network (MANET) is a collection of wireless mobile nodes forming a temporary network without the aid of any established infrastructure. To conduct meaningful performance analysis of MANETs, it is essential that the simulation of mobility model should reflect the realistic mobility pattern of mobile nodes i.e. placement of mobile nodes at different intervals of time. The formation of spontaneous network depends heavily on the movement of different nodes in a particular practical scenario. This research focuses on the modeling and simulation of a temporal Adaptive Mobility Model which can be adapted to any dynamic practical scenario. The mobility in the realistic environment is simulated based on a Probability Transition Matrix named as Personal Behavior Model (PBM) and validated for a practical Health Care Environment. The formation of MANET is assumed to be based on the movement of the patient i.e. mobile nodes in the health care environment. Patients waiting in front of each service point for different time intervals are taken as results and compared with the actual data.
文摘A mobile ad hoc network (MANET) is composed of mobile nodes, which do not have any fixed wired communication infrastructure. This paper proposes a protocol called “Delay, Jitter, Bandwidth, Cost, Power and Hop count Constraints Routing Protocol with Mobility Prediction for Mobile Ad hoc Network using Self Healing and Optimizing Routing Technique (QPHMP-SHORT)”. It is a multiple constraints routing protocol with self healing technique for route discovery to select a best routing path among multiple paths between a source and a destination as to increase packet delivery ratio, reliability and efficiency of mobile communication. QPHMP-SHORT considers the cost incurred in channel acquisition and the incremental cost proportional to the size of the packet. It collects the residual battery power of each node for each path;selects multiple paths, which have nodes with good battery power for transmission to satisfy the power constraint. QPHMP-SHORT uses Self-Healing and Optimizing Routing Technique (SHORT) to select a shortest best path among multiple selected paths by applying hops count constraint. It also uses the mobility prediction formula to find the stability of a link between two nodes.
文摘A novel scheme is presented to integrate mobile ad hoc networks (MANETs) with the lnternet and support mobility across wireless local area networks (WLANs) and MANETs. The mobile nodes, connected as a MANET, employ the optimize d link state routing (OLSR) protocol for routing within the MANET. Mobility management across WLANs and MANETs is achieved through the hierarchical mobile IPv6 (HMIPv6) protocol. The performance is evaluated on a HMIPv6 based test-bed composed of WLANs and MANETs. The efficiency gain obtained from using HMIPv6 in such a hybrid network is investigated. The investigation result shows that the use of HMIPv6 can achieve up to 27% gain on reducing the handoff latency when a mobile roams within a domain. Concerning the reduction of the signaling load on the lnternet, the use of HMIPv6 can achieve at least a 54% gain and converges to 69%.
文摘This paper proposes a connected dominating set (CDS) based mobility management algorithm, CMMA, to solve the problems of node entering, exiting and movement in mobile ad hoc networks (MANETs), which ensures the connectivity and efficiency of the CDS. Compared with Wu's algorithm, the proposed algorithm can make full use of present network conditions and involves fewer nodes. Also it has better performance with regard to the approximation factor, message complexity, and time complexity.
文摘Mobile Ad Hoc Network (MANET) is a reliable system formed by co-operating and independent nodes that connect and communicate with each other wirelessly without pre-existing infrastructure. In such a network, the easiest way to broadcast the packets to all network nodes is flooding. However, flooding leads to serious drawbacks such as collision, contention and redundant retransmission. These drawbacks are known as the broadcast storm problem. This research proposes an adaptive algorithm in order to decrease the overall network overhead and minimize the problems associated to flooding. Moreover this research concentrates on studying the effect of using different mobility models that provide general idea about nodes movement, status and locations. In particular the performance of Random Waypoint and File mobility models in terms of their effect on network communication is evaluated. Moreover, this research provides performance evaluation of different traffic types such as Constant Bit Rate (CBR) and Traffic GEN. Results from Qualnet simulations have revealed that the new proposed algorithm outperforms flooding in terms of different metrics: reducing end-to-end delay in addition to minimizing the normalized routing load and maximizing the packets delivery ratio, in addition to concluding that Traffic GEN outperforms the CBR in terms of throughput. Moreover the CBR traffic has higher delay values than Traffic GEN.
基金Supported in part by 863-2002AA103011-5, Shanghai Municipal R&D Foundation (No.035107008), and LG-KAIST-FUDAN International Cooperation Project.
文摘Although clustering is a convenient framework to enable traffic control and service support in Mobile Ad hoc NETworks (MANETs), it is seldom adopted in practice due to the additional traffic overhead it leads to for the resource limited ad hoc network. In order to address this problem, we proposed a loop-based approach to combine clustering and routing. By employing loop topologies, topology information is disseminated with a loop instead of a single node, which provides better robustness, and the nature of a loop that there are two paths between each pair of nodes within a loop composed of setup procedure, regular procedure and emergent route recovering. suggests smart route recovery strategy. Our approach is recovery procedure to achieve clustering, routing and
文摘Computation is spanning from PC to Mobile devices. The Mobile Ad hoc Networks (MANETs) are optimal choice to accommodate this growing trend but there is a problem, security is the core issue. MANETs rely on wireless links for communication. Wireless networks are considered more exposed to security attacks as compared to wired networks, especially;MANETs are the soft target due to vulnerable in nature. Lack of infrastructure, open peer to peer connectivity, shared wireless medium, dynamic topology and scalability are the key characteristics of MANETs which make them ideal for security attacks. In this paper, we shall discuss in detail, what does security mean, why MANETs are more susceptible to security attacks than wired networks, taxonomy of network attacks and layer wise analysis of network attacks. Finally, we shall propose solutions to meet the security challenges, according to our framed security criteria.
文摘Mobile computing is the most powerful application for network com-munication and connectivity,given recent breakthroughs in thefield of wireless networks or Mobile Ad-hoc networks(MANETs).There are several obstacles that effective networks confront and the networks must be able to transport data from one system to another with adequate precision.For most applications,a frame-work must ensure that the retrieved data reflects the transmitted data.Before driv-ing to other nodes,if the frame between the two nodes is deformed in the data-link layer,it must be repaired.Most link-layer protocols immediately disregard the frame and enable the high-layer protocols to transmit it down.In other words,because of asset information must be secured from threats,information is a valu-able resource.In MANETs,some applications necessitate the use of a network method for detecting and blocking these assaults.Building a secure intrusion detection system in the network,which provides security to the nodes and route paths in the network,is a major difficulty in MANET.Attacks on the network can jeopardize security issues discovered by the intrusion detection system engine,which are then blocked by the network’s intrusion prevention engine.By bringing the Secure Intrusion Detection System(S-IDS)into the network,a new technique for implementing security goals and preventing attacks will be developed.The Secure Energy Routing(SER)protocol for MANETs is introduced in this study.The protocol addresses the issue of network security by detecting and preventing attacks in the network.The data transmission in the MANET is forwarded using Elliptical Curve Cryptography(ECC)with an objective to improve the level of security.Network Simulator–2 is used to simulate the network and experiments are compared with existing methods.