A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel convert...A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel converter (MMC). The FBSM-MMC is a novel type of voltage source converter (VSC) and can directly control the output DC voltage and conduct bipolar currents, thus flexibly controlling the power flow of the urban rail transit catenary. The proposed topology can overcome the inherent disadvantages of the output voltage drop in the diode rectifier units, increase the power supply distance and reduce the number of traction substations. The flexible DC technology can coordinate multiple FBSM-MMCs in a wide area and jointly complete the bidirectional control of catenary power flow during the operation of the electric locomotive, so as to realize the local consumption and optimal utilization of the recovered braking energy of the train. In addition, the FBSM-MMCs can also adjust the output current when the locomotive is out of service to prevent the catenary from icing in winter. The working modes of the proposed topology are illustrated in detail and the control strategy is specially designed for normal locomotive operations and catenary de-icing. Simulation cases conducted by PSCAD/EMTDC validate the proposed topology and its control strategy.展开更多
Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristic...Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristics were implemented by Keithley 4200 Semiconductor Characterization System. The experimental results indicated that a maximum drain current over 400 mA/mm and a peak external transconductance of 215 mS/mm can be achieved in the initial HEMTs. However, after the devices endured a 10-h thermal aging in furnace under nitrogen condition at 300 ℃, the maximum reduction of saturation drain current and external transconductance at high gate-source voltage and drain-source voltage were 30% and 35%, respectively. Additionally, an increased drain-source leakage current was observed at three-terminal off-state. It was inferred that the degradation was mainly related to electron-trapping defects in the InAlN barrier layer.展开更多
Scissor-like element has a number of applications in deployable structures such as planar deployable structure (PDS) and ring deployable structure(RDS). However, the mobility analysis of the multi-loop deployable stru...Scissor-like element has a number of applications in deployable structures such as planar deployable structure (PDS) and ring deployable structure(RDS). However, the mobility analysis of the multi-loop deployable structures is made more difficulty by the traditional mobility formula, because the deployable structure is a very complex structure with multi-loop. Therefore, On the basis of screw theory, the calculation method of mobility of deployable structures of SLE is thoroughly discussed. In order to investigate the mobility, decomposing and composing structures(DCS) are developed, and the basic units are able to be obtained. On the basis of the deployable structures’ geometrical characteristics, there exists a closed-loop quadrilateral structure and some non-closed-loop quadrilateral structures in PDS. Also, a six legs parallel structure is present in RDS. The basic units’ mobility can be solved by both the methods of screw theory and topology constraint graphs. Then, composing the related basic units, the formula of planar deployable structures’ mobility can be built and solves the mobility of ring deployable structure. The analysis method solves the mobility analysis of the multi-loop deployable structures which is difficulty by the traditional method, and plays an important role in further research about the mobility of other complex deployable structures.展开更多
In this paper a simple method for determination of the apparent mobility of cation in a soil colloid system was described. With this method apparent mobilities of Na+, K+, and Ca2+ ions in the systems of the ferric lu...In this paper a simple method for determination of the apparent mobility of cation in a soil colloid system was described. With this method apparent mobilities of Na+, K+, and Ca2+ ions in the systems of the ferric luvisol, acrisol, and ferralsol were determined, and the reduction percentages of the mobilities were calculated. The results showed that the apparent mobilities of different cations at the same normality in a given soil system were in the order UNa> UK> UCa; those of the same cations among different soil systems were in the order ferralsol > acrisol > ferric luvisol, but the reduction percentages were in a reverse order, which among different cations at the same normality was Ca2+> K+> Na+ for ferric luvisol and acrisol systems, but was K+> Ca2+> Na+ for farralsol system. These results were interpreted in terms of different amounts of negative charge the clay fraction of different soils carries, and different mechanisms by which the soils adsorb the cations.展开更多
基金supported in part by National Key Research and Development Program of China(2017YFB1200801)Continuous Co-phase Traction Power System based on Static Power Converter(20192001148).
文摘A novel DC traction power supply system suitable for energy feeding and de-icing is proposed in this paper for an urban rail transit catenary on the basis of the full bridge submodule (FBSM) modular multilevel converter (MMC). The FBSM-MMC is a novel type of voltage source converter (VSC) and can directly control the output DC voltage and conduct bipolar currents, thus flexibly controlling the power flow of the urban rail transit catenary. The proposed topology can overcome the inherent disadvantages of the output voltage drop in the diode rectifier units, increase the power supply distance and reduce the number of traction substations. The flexible DC technology can coordinate multiple FBSM-MMCs in a wide area and jointly complete the bidirectional control of catenary power flow during the operation of the electric locomotive, so as to realize the local consumption and optimal utilization of the recovered braking energy of the train. In addition, the FBSM-MMCs can also adjust the output current when the locomotive is out of service to prevent the catenary from icing in winter. The working modes of the proposed topology are illustrated in detail and the control strategy is specially designed for normal locomotive operations and catenary de-icing. Simulation cases conducted by PSCAD/EMTDC validate the proposed topology and its control strategy.
基金Supported by National Natural Science Foundation of China(No.60876009)Natural Science Foundation of Tianjin(No.09JCZDJC16600)
文摘Lattice-matched InAlN/AlN/GaN high electron mobility transistors (HEMTs) grown on sapphire substrate by using low-pressure metallorganic chemical vapor deposition were prepared, and the comprehensive DC characteristics were implemented by Keithley 4200 Semiconductor Characterization System. The experimental results indicated that a maximum drain current over 400 mA/mm and a peak external transconductance of 215 mS/mm can be achieved in the initial HEMTs. However, after the devices endured a 10-h thermal aging in furnace under nitrogen condition at 300 ℃, the maximum reduction of saturation drain current and external transconductance at high gate-source voltage and drain-source voltage were 30% and 35%, respectively. Additionally, an increased drain-source leakage current was observed at three-terminal off-state. It was inferred that the degradation was mainly related to electron-trapping defects in the InAlN barrier layer.
基金supported by National Natural Science Foundation of China(Grant No. 50875210)
文摘Scissor-like element has a number of applications in deployable structures such as planar deployable structure (PDS) and ring deployable structure(RDS). However, the mobility analysis of the multi-loop deployable structures is made more difficulty by the traditional mobility formula, because the deployable structure is a very complex structure with multi-loop. Therefore, On the basis of screw theory, the calculation method of mobility of deployable structures of SLE is thoroughly discussed. In order to investigate the mobility, decomposing and composing structures(DCS) are developed, and the basic units are able to be obtained. On the basis of the deployable structures’ geometrical characteristics, there exists a closed-loop quadrilateral structure and some non-closed-loop quadrilateral structures in PDS. Also, a six legs parallel structure is present in RDS. The basic units’ mobility can be solved by both the methods of screw theory and topology constraint graphs. Then, composing the related basic units, the formula of planar deployable structures’ mobility can be built and solves the mobility of ring deployable structure. The analysis method solves the mobility analysis of the multi-loop deployable structures which is difficulty by the traditional method, and plays an important role in further research about the mobility of other complex deployable structures.
文摘In this paper a simple method for determination of the apparent mobility of cation in a soil colloid system was described. With this method apparent mobilities of Na+, K+, and Ca2+ ions in the systems of the ferric luvisol, acrisol, and ferralsol were determined, and the reduction percentages of the mobilities were calculated. The results showed that the apparent mobilities of different cations at the same normality in a given soil system were in the order UNa> UK> UCa; those of the same cations among different soil systems were in the order ferralsol > acrisol > ferric luvisol, but the reduction percentages were in a reverse order, which among different cations at the same normality was Ca2+> K+> Na+ for ferric luvisol and acrisol systems, but was K+> Ca2+> Na+ for farralsol system. These results were interpreted in terms of different amounts of negative charge the clay fraction of different soils carries, and different mechanisms by which the soils adsorb the cations.