Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that ...Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that Envisaged 5G(E5G)mobile technology would be operational in certain developed countries by 2023.The Internet of Things(IoTs)will transform how humans live when combined with smart and integrated sensing devices,such as in-home sensing devices.Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology.High output,reduced latency,highly reliable,greater scalability,high performance,capacity,bandwidth efficiency,virtual open-air transmission,and efficient energy mobile wireless communications are all being investigated currently.In this work,a comprehensive path for addressing the difficulties and developments associated with 5G mobile technology is provided.The debate and description of a complete analysis of current situations,certain characteristics and prospective scenarios,important technologies,problems and advances,and spectrum allocation of envisioned 5G mobile technologies are provided.Furthermore,this paper analyzes the most notable elements of 5G mobile technology,such as Cognitive Radio(CR),flexibility,accessibility,and cloud-based service offers,which will assure 5G mobile technology’s dominance as the main protocol for international communication.Eventually,this paper provides a method for integrating CR with current wireless communication systems,the necessity for further evolution of the E5G network,and the need for comprehensive consideration of architecture evolution and function enhancement to enhance the E5G mobile technologies.展开更多
Due to non-saturating magnetoresistance(MR)and the special compensation mechanism,the Weyl semimetal Ta As single crystal has attracted considerable attention in condensed matter physics.Herein,we use maximum entropy ...Due to non-saturating magnetoresistance(MR)and the special compensation mechanism,the Weyl semimetal Ta As single crystal has attracted considerable attention in condensed matter physics.Herein,we use maximum entropy mobility spectrum analysis(MEMSA)to extract charge carrier information by fitting the experimentally measured longitudinal and transverse electric transport curves of Ta As.The carrier types and the number of bands are obtained without any hypothesis.Study of the temperature dependence shows details of carrier property evolution.Our quantitative results explain the nonsaturated magnetoresistance and Hall sign change phenomena of TaAs.展开更多
The field of mobility prediction has been widely investigated in the recent past,especially the reduction of the coverage radius of cellular networks,which led to an increase in hand-over events.Changing the cell cove...The field of mobility prediction has been widely investigated in the recent past,especially the reduction of the coverage radius of cellular networks,which led to an increase in hand-over events.Changing the cell coverage very frequently,for example,may lead to service disruptions if a predictive approach is not deployed in the system.Although several works examined mobility prediction in the new-generation mobile networks,all of these studies focused on studying the time features of mobility traces,and the spectral content of historical mobility patterns was not considered for prediction purposes as yet.In the present study,we propose a new approach to mobility prediction by analyzing the effects of a proper mobility sampling frequency.The proposed approach lies in the mobility analysis in the frequency domain,to extract hidden features of the mobility process.Thus,we proposed a new methodology to determine the spectral content of mobility traces(considered as signals)and,thus,the appropriate sampling frequency,which can provide numerous advantages.We considered several types of mobility models(e.g.pedestrian,urban,and vehicular),containing important details in the time and frequency domains.Several simulation campaigns were performed to observe and analyze the characteristics of mobility from real traces and to evaluate the effects of sampling frequency on the spectral content.展开更多
An aerosol electrical mobility spectrum analyzer(AEMSA),developed at Hanyang University,was employed to investigate the particle charge characteristics in the Antarctic and Arctic regions.The particle charge character...An aerosol electrical mobility spectrum analyzer(AEMSA),developed at Hanyang University,was employed to investigate the particle charge characteristics in the Antarctic and Arctic regions.The particle charge characteristics in these areas were compared with the charging state in Ansan,South Korea,located in the midlatitude,where artificial factors,such as human activity,urbanization,and traffic,might result in a higher total concentration.Furthermore,in Ansan,South Korea,the charged-particle polarity ratio was very stable and was close to 1.However,notably different particle charge characteristics were obtained in the Antarctic and Arctic regions.The imbalance between the numbers of positively and negatively charged particles was evident,resulting in more positive charges on the atmospheric particles.On average,the positively charged particle concentrations in the Antarctic and Arctic areas were 1.4 and 2.8 times higher,respectively,compared with the negatively charged particles.The developed AEMSA system and the findings of this study provide useful information on the characteristics of atmospheric aerosols in the Antarctic and Arctic regions and can be further utilized to study particle formation mechanisms.展开更多
文摘Fifth Generation(5G)communications are regarded as the cornerstone to household consumer experience improvements and smart manufacturing revolution from the standpoint of industries’objectives.It is anticipated that Envisaged 5G(E5G)mobile technology would be operational in certain developed countries by 2023.The Internet of Things(IoTs)will transform how humans live when combined with smart and integrated sensing devices,such as in-home sensing devices.Recent research is being carried out all over the world to produce a new technique that can be crucial in the success of the anticipated 5G mobile technology.High output,reduced latency,highly reliable,greater scalability,high performance,capacity,bandwidth efficiency,virtual open-air transmission,and efficient energy mobile wireless communications are all being investigated currently.In this work,a comprehensive path for addressing the difficulties and developments associated with 5G mobile technology is provided.The debate and description of a complete analysis of current situations,certain characteristics and prospective scenarios,important technologies,problems and advances,and spectrum allocation of envisioned 5G mobile technologies are provided.Furthermore,this paper analyzes the most notable elements of 5G mobile technology,such as Cognitive Radio(CR),flexibility,accessibility,and cloud-based service offers,which will assure 5G mobile technology’s dominance as the main protocol for international communication.Eventually,this paper provides a method for integrating CR with current wireless communication systems,the necessity for further evolution of the E5G network,and the need for comprehensive consideration of architecture evolution and function enhancement to enhance the E5G mobile technologies.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11674054,U1932217,and 11704067)。
文摘Due to non-saturating magnetoresistance(MR)and the special compensation mechanism,the Weyl semimetal Ta As single crystal has attracted considerable attention in condensed matter physics.Herein,we use maximum entropy mobility spectrum analysis(MEMSA)to extract charge carrier information by fitting the experimentally measured longitudinal and transverse electric transport curves of Ta As.The carrier types and the number of bands are obtained without any hypothesis.Study of the temperature dependence shows details of carrier property evolution.Our quantitative results explain the nonsaturated magnetoresistance and Hall sign change phenomena of TaAs.
基金supported by the Czech Ministry of Education,Youth and Sports under project Reg.No.SP2021/25partially from the project“e-Infrastructure CZ”Reg.No.LM2018140.
文摘The field of mobility prediction has been widely investigated in the recent past,especially the reduction of the coverage radius of cellular networks,which led to an increase in hand-over events.Changing the cell coverage very frequently,for example,may lead to service disruptions if a predictive approach is not deployed in the system.Although several works examined mobility prediction in the new-generation mobile networks,all of these studies focused on studying the time features of mobility traces,and the spectral content of historical mobility patterns was not considered for prediction purposes as yet.In the present study,we propose a new approach to mobility prediction by analyzing the effects of a proper mobility sampling frequency.The proposed approach lies in the mobility analysis in the frequency domain,to extract hidden features of the mobility process.Thus,we proposed a new methodology to determine the spectral content of mobility traces(considered as signals)and,thus,the appropriate sampling frequency,which can provide numerous advantages.We considered several types of mobility models(e.g.pedestrian,urban,and vehicular),containing important details in the time and frequency domains.Several simulation campaigns were performed to observe and analyze the characteristics of mobility from real traces and to evaluate the effects of sampling frequency on the spectral content.
基金supported by the research fund of Hanyang University(HY-2019-P).
文摘An aerosol electrical mobility spectrum analyzer(AEMSA),developed at Hanyang University,was employed to investigate the particle charge characteristics in the Antarctic and Arctic regions.The particle charge characteristics in these areas were compared with the charging state in Ansan,South Korea,located in the midlatitude,where artificial factors,such as human activity,urbanization,and traffic,might result in a higher total concentration.Furthermore,in Ansan,South Korea,the charged-particle polarity ratio was very stable and was close to 1.However,notably different particle charge characteristics were obtained in the Antarctic and Arctic regions.The imbalance between the numbers of positively and negatively charged particles was evident,resulting in more positive charges on the atmospheric particles.On average,the positively charged particle concentrations in the Antarctic and Arctic areas were 1.4 and 2.8 times higher,respectively,compared with the negatively charged particles.The developed AEMSA system and the findings of this study provide useful information on the characteristics of atmospheric aerosols in the Antarctic and Arctic regions and can be further utilized to study particle formation mechanisms.