The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural par...The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.展开更多
This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing...This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework.展开更多
Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For syst...Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For systematically estimating the volume of entire plots,airborne laser scanning(ALS) data are used.The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans(STLS) of sample plots.Although reliable,this method is time-consuming,which greatly hampers its use.Here,a handheld mobile terrestrial laser scanning(HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH.Different data acquisition techniques were applied at a sample plot,then the resulting parameters were comparatively analysed.The calculated DBH values were comparable to the manual measurements for HMTLS,STLS,and ALS data sets.Given the comparability of the extracted parameters,with a reduced point density of HTMLS compared to STLS data,and the reasonable increase of performance,with a reduction of acquisition time with a factor of5 compared to conventional STLS techniques and a factor of3 compared to manual measurements,HMTLS is considered a useful alternative technique.展开更多
Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in undergr...Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in underground environments.This study proposes a robust workflow to classify roof bolts in 3 D point cloud data and to generate maps of roof bolt density and spacing.The workflow was evaluated for identifying roof bolts in an underground coal mine with suboptimal lighting and global navigation satellite system(GNSS)signals not available.The approach is based on supervised classification using the multi-scale Canupo classifier coupled with a random sample consensus(RANSAC)shape detection algorithm to provide robust roof bolt identification.The issue of sparseness in point cloud data has been addressed through upsampling by using a moving least squares method.The accuracy of roof bolt identification was measured by correct identification of roof bolts(true positives),unidentified roof bolts(false negatives),and falsely identified roof bolts(false positives)using correctness,completeness,and quality metrics.The proposed workflow achieved correct identification of 89.27%of the roof bolts present in the test area.However,considering the false positives and false negatives,the overall quality metric was reduced to 78.54%.展开更多
A new scan matching method for mobile robot localization is presented, which takes line segment as the feature and matches the real scans in the given reference map by relationships of the directional-defined line seg...A new scan matching method for mobile robot localization is presented, which takes line segment as the feature and matches the real scans in the given reference map by relationships of the directional-defined line segments. The alignment was done by hierarchically identifying the multiple relationships and the result was recorded in a correspondence matrix, where the best match is defined and selected for localization. It is indicated that the searching algorithm of the best match can find the ambiguities and get rid of them. This method with less computational cost works well in occluded environment, and can correct the error in pose estimation without the need for the estimation itself. The efficiency, accuracy and robustness of this method were verified by experiments of localization in an occluded environment and a long-distance indoor navigation.展开更多
Automatic and accurate classification is a fundamental problem to the analysis and modeling of LiDAR(Light Detection and Ranging)data.Recently,convolutional neural network(ConvNet or CNN)has achieved remarkable perfor...Automatic and accurate classification is a fundamental problem to the analysis and modeling of LiDAR(Light Detection and Ranging)data.Recently,convolutional neural network(ConvNet or CNN)has achieved remarkable performance in image recognition and computer vision.While significant efforts have also been made to develop various deep networks for satellite image scene classification,it still needs to further investigate suitable deep learning network frameworks for 3D dense mobile laser scanning(MLS)data.In this paper,we present a simple deep CNN for multiple object classification based on multi-scale context representation.For the pointwise classification,we first extracted the neighboring points within spatial context and transformed them into a three-channel image for each point.Then,the classification task can be treated as the image recognition using CNN.The proposed CNN architecture adopted common convolution,maximum pooling and rectified linear unit(ReLU)layers,which combined multiple deeper network layers.After being trained and tested on approximately seven million labeled MLS points,the deep CNN model can classify accurately into nine classes.Comparing with the widely used ResNet algorithm,this model performs better precision and recall rates,and less processing time,which indicated the significant potential of deep-learning-based methods in MLS data classification.展开更多
移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一...移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。展开更多
文摘The use of mobile laser scanning to survey forest ecosystems is a promising,scalable technology to describe forest 3D structures at high resolution.To confirm the con-sistency in the retrieval of forest structural parameters using hand-held laser scanning(HLS),before operationalizing the method,confirming the data is crucial.We analyzed the per-formance of tree-level mapping based on HLS under differ-ent phenology conditions on a mixed forest in western Spain comprising Pinus pinaster and two deciduous species,Alnus glutinosa and Quercus pyrenaica.The area was surveyed twice during the growing season(July 2022)and once in the deciduous season(February 2022)using several scan-ning paths.Ground reference data(418 trees,15 snags)was used to calibrate the HLS data and to assess the influence of phenology when converting 3D data into tree-level attrib-utes(DBH,height and volume).The HLS-based workflow was robust at isolating tree positions and recognizing stems despite changes in phenology.Ninety-six percent of all pairs matched below 65 cm.For DBH,phenology barely altered estimates.We observed a strong agreement when comparing HLS-based tree height distributions.The values exceeded 2 m when comparing height measurements,confirming height data should be carefully used as reference in remote sensing-based inventories,especially for deciduous species.Tree volume was more precise for pines(r=0.95,and rela-tive RMSE=21.3–23.8%)compared to deciduous species(r=0.91–0.96,and relative RMSE=27.3–30.5%).HLS data and the forest structural complexity tool performed remark-ably,especially in tree positioning considering mixed forests and mixed phenology conditions.
基金Project(SIIT-AUN/SEED-Net-G-S1 Y16/018)supported by the Doctoral Asean University Network ProgramProject supported by the Metropolitan Expressway Co.,Ltd.,Japan+2 种基金Project supported by Elysium Co.Ltd.Project supported by Aero Asahi Corporation,Co.,Ltd.Project supported by the Expressway Authority of Thailand。
文摘This paper presents a voxel-based region growing method for automatic road surface extraction from mobile laser scanning point clouds in an expressway environment.The proposed method has three major steps:constructing a voxel model;extracting the road surface points by employing the voxel-based segmentation algorithm;refining the road boundary using the curb-based segmentation algorithm.To evaluate the accuracy of the proposed method,the two-point cloud datasets of two typical test sites in an expressway environment consisting of flat and bumpy surfaces with a high slope were used.The proposed algorithm extracted the road surface successfully with high accuracy.There was an average recall of 99.5%,the precision was 96.3%,and the F1 score was 97.9%.From the extracted road surface,a framework for the estimation of road roughness was proposed.Good agreement was achieved when comparing the results of the road roughness map with the visual image,indicating the feasibility and effectiveness of the proposed framework.
基金funded by University College GhentGhent University。
文摘Sustainable forest management heavily relies on the accurate estimation of tree parameters.Among others,the diameter at breast height(DBH) is important for extracting the volume and mass of an individual tree.For systematically estimating the volume of entire plots,airborne laser scanning(ALS) data are used.The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans(STLS) of sample plots.Although reliable,this method is time-consuming,which greatly hampers its use.Here,a handheld mobile terrestrial laser scanning(HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH.Different data acquisition techniques were applied at a sample plot,then the resulting parameters were comparatively analysed.The calculated DBH values were comparable to the manual measurements for HMTLS,STLS,and ALS data sets.Given the comparability of the extracted parameters,with a reduced point density of HTMLS compared to STLS data,and the reasonable increase of performance,with a reduction of acquisition time with a factor of5 compared to conventional STLS techniques and a factor of3 compared to manual measurements,HMTLS is considered a useful alternative technique.
基金financially supported by the Australian Coal Industry’s Research Program(ACARP)Project C27057。
文摘Roof bolts such as rock bolts and cable bolts provide structural support in underground mines.Frequent assessment of these support structures is critical to maintain roof stability and minimise safety risks in underground environments.This study proposes a robust workflow to classify roof bolts in 3 D point cloud data and to generate maps of roof bolt density and spacing.The workflow was evaluated for identifying roof bolts in an underground coal mine with suboptimal lighting and global navigation satellite system(GNSS)signals not available.The approach is based on supervised classification using the multi-scale Canupo classifier coupled with a random sample consensus(RANSAC)shape detection algorithm to provide robust roof bolt identification.The issue of sparseness in point cloud data has been addressed through upsampling by using a moving least squares method.The accuracy of roof bolt identification was measured by correct identification of roof bolts(true positives),unidentified roof bolts(false negatives),and falsely identified roof bolts(false positives)using correctness,completeness,and quality metrics.The proposed workflow achieved correct identification of 89.27%of the roof bolts present in the test area.However,considering the false positives and false negatives,the overall quality metric was reduced to 78.54%.
基金Sponsored by the National High Technology Research and Development Program of China(Grant No.2006AA040203)The National Natural Science Foundation of China(Grant No.60475032 and 60775062)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0538)
文摘A new scan matching method for mobile robot localization is presented, which takes line segment as the feature and matches the real scans in the given reference map by relationships of the directional-defined line segments. The alignment was done by hierarchically identifying the multiple relationships and the result was recorded in a correspondence matrix, where the best match is defined and selected for localization. It is indicated that the searching algorithm of the best match can find the ambiguities and get rid of them. This method with less computational cost works well in occluded environment, and can correct the error in pose estimation without the need for the estimation itself. The efficiency, accuracy and robustness of this method were verified by experiments of localization in an occluded environment and a long-distance indoor navigation.
基金National Natural Science Foundation of China(Nos.41971423,31972951,41771462)Hunan Provincial Natural Science Foundation of China(No.2020JJ3020)+1 种基金Science and Technology Planning Project of Hunan Province(No.2019RS2043,2019GK2132)Outstanding Youth Project of Education Department of Hunan Province(No.18B224)。
文摘Automatic and accurate classification is a fundamental problem to the analysis and modeling of LiDAR(Light Detection and Ranging)data.Recently,convolutional neural network(ConvNet or CNN)has achieved remarkable performance in image recognition and computer vision.While significant efforts have also been made to develop various deep networks for satellite image scene classification,it still needs to further investigate suitable deep learning network frameworks for 3D dense mobile laser scanning(MLS)data.In this paper,we present a simple deep CNN for multiple object classification based on multi-scale context representation.For the pointwise classification,we first extracted the neighboring points within spatial context and transformed them into a three-channel image for each point.Then,the classification task can be treated as the image recognition using CNN.The proposed CNN architecture adopted common convolution,maximum pooling and rectified linear unit(ReLU)layers,which combined multiple deeper network layers.After being trained and tested on approximately seven million labeled MLS points,the deep CNN model can classify accurately into nine classes.Comparing with the widely used ResNet algorithm,this model performs better precision and recall rates,and less processing time,which indicated the significant potential of deep-learning-based methods in MLS data classification.
文摘移动单线激光雷达(Laser detection and ranging,LiDAR)扫描(Mobile single-layer LiDAR scanning,MSLS)树冠叶面积估计方法使用单一视角的单线激光雷达采集树冠点云数据,获取的冠层信息不够全面,限制了树冠叶面积估计精度。本文提出一种基于移动多线LiDAR扫描(Mobile multi-layer LiDAR scanning,MMLS)的树冠叶面积估计方法,使用多线LiDAR从多个视角采集树冠点云数据,提升树冠叶面积估计精度。首先,将多线LiDAR采集的点云数据变换到世界坐标系下,通过感兴趣区域(Region of interest,ROI)提取出树冠点云。然后,提出一种MMLS树冠点云融合方法,逐个融合单个激光器采集的树冠点云,设置距离阈值删除重复点,添加新点。最后,构建MMLS空间分辨率网格,建立基于树冠网格面积的树冠叶面积估计模型。实验使用VLP-16型多线LiDAR传感器搭建MMLS系统,设置1、1.5 m 2个测量距离和间隔45°的8个测量角度对6个具有不同冠层密度的树冠进行数据采集,共得到96个树冠样本。采用本文方法,树冠叶面积线性估计模型的均方根误差(Root mean squared error,RMSE)为0.1041 m^(2),比MSLS模型降低0.0578 m^(2),决定系数R^(2)为0.9526,比MSLS模型提高0.0675。实验结果表明,本文方法通过多线LiDAR多视角树冠点云数据采集、MMLS树冠点云融合和空间分辨率网格构建,有效提升了树冠叶面积估计精度。