The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presen...The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presented for a type of nonholonomic mobile robots. Then, a new time-varying feedback controller is proposed to stabilize the uncertain system exponentially with the help of the stabilization theorems, state-scaling and switching techniques. The exponential stability of the closed-loop system is rigorously proved. Simulation results are given to demonstrate the effectiveness of the proposed strategies.展开更多
基金Supported by the the National Natural Science Foundation of China(Nos.61374040,61304004 and 61473179)Natural Science Foundation of Shandong Province(Nos.ZR2013FM012,ZR2014FM007)
文摘The exponential stabilization problem of a robot-camera system with unknown camera parameters is investigated. Based on the visual feedback and the state-input transformation, an uncertain chained form model is presented for a type of nonholonomic mobile robots. Then, a new time-varying feedback controller is proposed to stabilize the uncertain system exponentially with the help of the stabilization theorems, state-scaling and switching techniques. The exponential stability of the closed-loop system is rigorously proved. Simulation results are given to demonstrate the effectiveness of the proposed strategies.