Content-centric networking(CCN) is rising to solve the problems suffered by traditional networks,especially in terms of content delivery.One of the critical issues for basic CCN is supporting mobility.Handoff of Mobil...Content-centric networking(CCN) is rising to solve the problems suffered by traditional networks,especially in terms of content delivery.One of the critical issues for basic CCN is supporting mobility.Handoff of Mobile Content Source(MCS) will result in a large scale routing update,which generates huge amount of routing overhead and leads to service interruption.Most of the existing CCN mobility mechanisms are transplanted from the IP mobility solutions,which are unnaturally integrated with CCN.Different from previous works,a mobility strategy from the perspective of CCN architecture is proposed to support the handoff of MCS in this paper.Especially,we define the critical network routers that can limit the routing update scale effectively when MCS handoff is conducted.Based on the defined critical network routers,the proposed scheme can provide lower routing update overhead,faster routing convergence and shorter service interruption time.Finally,series of simulations are conducted to validate the effectiveness of our proposed scheme.展开更多
Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop...Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.展开更多
基金supported by the National Basic Research Program(973) of China(No.2012CB315801)the National Natural Science Fund(No.61302089,61300184)
文摘Content-centric networking(CCN) is rising to solve the problems suffered by traditional networks,especially in terms of content delivery.One of the critical issues for basic CCN is supporting mobility.Handoff of Mobile Content Source(MCS) will result in a large scale routing update,which generates huge amount of routing overhead and leads to service interruption.Most of the existing CCN mobility mechanisms are transplanted from the IP mobility solutions,which are unnaturally integrated with CCN.Different from previous works,a mobility strategy from the perspective of CCN architecture is proposed to support the handoff of MCS in this paper.Especially,we define the critical network routers that can limit the routing update scale effectively when MCS handoff is conducted.Based on the defined critical network routers,the proposed scheme can provide lower routing update overhead,faster routing convergence and shorter service interruption time.Finally,series of simulations are conducted to validate the effectiveness of our proposed scheme.
基金This work was funded by the High- tech Research and Development Program of China (863 Program) under Grant 2006AA01Z208.
文摘Multi-criteria handoff algorithms have been playing a more important role than the traditional handoff algorithms.In order to balance the satisfaction of users and the efficiency of networks,it is necessary to develop new technologies to improve the validity of handoff algorithms.Intelligent and optimized handoff algorithms in hybrid networks that integrate Ad hoc and mobile cellular systems are well-adaptive and robust.They are able to implement handoffs adaptively,according to specific multi-factors such as different Quality of Service(QoS)requirements,network states and mobile node conditions in the future hybrid networks.Therefore,these intelligent and optimized algorithms can make more effective handover decision,and accordingly improve the system’s performance.The future research will tackle intelligent or optimized vertical handoff algorithms for integrated Ad hoc and mobile cellular networks to improve their whole system performance.