Technological advancement in the field of trans- portation and communication has been happening at a faster pace in the past few decades. As the demand for high-speed transportation increases, the need for an improved...Technological advancement in the field of trans- portation and communication has been happening at a faster pace in the past few decades. As the demand for high-speed transportation increases, the need for an improved seamless communication system to handle higher data traffic in a highly mobile environment becomes imperative. This paper proposes a novel scheme to enhance the quality of service in high-speed railway (HSR) communication environment using the concept of torch nodes (TNs) and adaptive measurement aggregation (AMA). The system was modeled using an object-oriented discrete event sim- ulator, and the performance was analyzed against the existing single-antenna scheme. The simulation results show that the proposed scheme with its minimal imple- mentation overhead can efficiently perform seamless han- dover with reduced handover failure and communication interruption probability.展开更多
Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device off...Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.展开更多
文摘Technological advancement in the field of trans- portation and communication has been happening at a faster pace in the past few decades. As the demand for high-speed transportation increases, the need for an improved seamless communication system to handle higher data traffic in a highly mobile environment becomes imperative. This paper proposes a novel scheme to enhance the quality of service in high-speed railway (HSR) communication environment using the concept of torch nodes (TNs) and adaptive measurement aggregation (AMA). The system was modeled using an object-oriented discrete event sim- ulator, and the performance was analyzed against the existing single-antenna scheme. The simulation results show that the proposed scheme with its minimal imple- mentation overhead can efficiently perform seamless han- dover with reduced handover failure and communication interruption probability.
基金supported by National Natural Science Foundation of China (Grant No.61261017, No.61571143 and No.61561014)Guangxi Natural Science Foundation (2013GXNSFAA019334 and 2014GXNSFAA118387)+3 种基金Key Laboratory of Cognitive Radio and Information Processing, Ministry of Education (No.CRKL150112)Guangxi Key Lab of Wireless Wideband Communication & Signal Processing (GXKL0614202, GXKL0614101 and GXKL061501)Sci.and Tech.on Info.Transmission and Dissemination in Communication Networks Lab (No.ITD-U14008/KX142600015)Graduate Student Research Innovation Project of Guilin University of Electronic Technology (YJCXS201523)
文摘Offloading application to cloud can augment mobile devices' computation capabilities for the emerging resource-hungry mobile application, however it can also consume both much time and energy for mobile device offloading application remotely to cloud. In this paper, we develop a newly adaptive application offloading decision-transmission scheduling scheme which can solve above problem efficiently. Specifically, we first propose an adaptive application offloading model which allows multiple target clouds coexisting. Second, based on Lyapunov optimization theory, a low complexity adaptive offloading decision-transmission scheduling scheme has been proposed. And the performance analysis is also given. Finally, simulation results show that,compared with that all applications are executed locally, mobile device can save 68.557% average execution time and 67.095% average energy consumption under situations.