The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to mod...The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-cS-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces. The results presented in this article improve and extend the corresponding results announced by many authors recently.展开更多
The present paper studies the unstable nonlinear Schr¨odinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schr¨odin...The present paper studies the unstable nonlinear Schr¨odinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schr¨odinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schr¨odinger equation and its modified form are formally obtained.展开更多
基金supported by the Natural Science Foundation of Yunnan Province (2011FB074)
文摘The purpose of this article is first to introduce the concept of multi-valued to- tally Quasi-φ-asymptotically nonexpansive semi-groups, which contains many kinds of semi- groups as its special cases, and then to modify the Halpern-Mann-type iteration algorithm for multi-valued totally Quasi-cS-asymptotically nonexpansive semi-groups to have the strong convergence under a limit condition only in the framework of Banach spaces. The results presented in this article improve and extend the corresponding results announced by many authors recently.
文摘The present paper studies the unstable nonlinear Schr¨odinger equations, describing the time evolution of disturbances in marginally stable or unstable media. More precisely, the unstable nonlinear Schr¨odinger equation and its modified form are analytically solved using two efficient distinct techniques, known as the modified Kudraysov method and the sine-Gordon expansion approach. As a result, a wide range of new exact traveling wave solutions for the unstable nonlinear Schr¨odinger equation and its modified form are formally obtained.