A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the Sout...A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the South China Sea in 2012. The travel time differences of different modes at various frequencies and distances are extracted by warping transform. The mean bottom acoustic parameters are inverted by matching the theoretical modal time differences to that of the experimental data. The inversion results are validated by using other explosive signals at different distances.展开更多
Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameter...Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 11174235the Fundamental Research Funds for the central Universities of Ministry of Education of China under Grant No 3102014JC02010301
文摘A geoacoustic inversion method is proposed based on the modal dispersion curve of two-wideband explosive signals for range-dependent environment. It is applied to the wideband explosive sound source data from the South China Sea in 2012. The travel time differences of different modes at various frequencies and distances are extracted by warping transform. The mean bottom acoustic parameters are inverted by matching the theoretical modal time differences to that of the experimental data. The inversion results are validated by using other explosive signals at different distances.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11434012,11774374,11404366 and41561144006
文摘Existing sequential parameter estimation methods use the acoustic pressure of a line array as observations. The modal dispersion curves are employed to estimate the sound speed profile(SSP) and geoacoustic parameters based on the ensemble Kalman filter. The warping transform is implemented to the signals received by a single hydrophone to obtain the dispersion curves. The experimental data are collected at a range-independent shallow water site in the South China Sea. The results indicate that the SSPs are well estimated and the geoacoustic parameters are also well determined. Comparisons of the observed and estimated modal dispersion curves show good agreement.