For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading o...For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.展开更多
文摘For a serious prediction of vibration characteristics of any structure, a detailed knowledge of the modal characteristic is essential. This is especially important for bladed turbine rotors. Mistuning of the blading of a turbine rotor can appear due to manufacturing tolerances or because of the blading process itself due to unequal mounting of the blades into the disk. This paper investigates the mistuning of the individual blades of a low pressure turbine with respect to the effects mentioned above. Two different rotors with different aerodynamic design of the blades were investigated. The blades were mounted to the disk with a so-called hammer head root which is especially prone to mounting irregularities. For detailed investigations, the rotor was excited with a shaker system to detect the forced response behavior of the individual blades. The measurements were done with a laser vibrometer system. As the excitation of rotor structure was held constant during measurement, it was possible to detect the line of nodes and mode shapes as well. It could be shown that the assembly process has an influence on the mistuning. The data were analyzed and compared with numerical results. For this, different contact models and boundary conditions were used. The above described characterization of modal behavior of the rotor is the basis for the upcoming aeroelastic investigations and especially for the blade vibration measurements of the rotor, turning with design and off-design speeds.