International guidelines for post-cardiac arrest care recommend using multi-modal strategies to avoid the withdrawal of life-sustaining therapy(WLST)in patients with the potential for neurological recovery.[1]However,...International guidelines for post-cardiac arrest care recommend using multi-modal strategies to avoid the withdrawal of life-sustaining therapy(WLST)in patients with the potential for neurological recovery.[1]However,a clear methodology for multi-modal approaches has yet to be developed.Neuron-specific enolase(NSE)is currently the only recommended biomarker,and the European Resuscitation Council(ERC)and the European SocietyofIntensiveCareMedicine(ESICM)have proposed a cutoff value of 60μg/L at 48 and/or 72 h after the return of spontaneous circulation(ROSC)as a multimodal prognostic tool for predicting poor neurological outcomes.展开更多
A 68-years old woman presented with ahistory of recurrent fever of 38-39°ac-companied by chills and weakness over the past month.Her physical examination was unremarkable except for an audible 3/6 ejection murmur...A 68-years old woman presented with ahistory of recurrent fever of 38-39°ac-companied by chills and weakness over the past month.Her physical examination was unremarkable except for an audible 3/6 ejection murmur at the 2nd right intercostal space.Her vital signs were normal with no fever at presentation.Laboratory tests showed elevated white blood count of 11,800cells/mm3 with a remarkable neutrophilia and elevated C-reactive protein of 14 mg/dL.Blood glucose,renal and liver function tests were all normal.展开更多
The introduction of machine learning (ML) in the research domain is a new era technique. The machine learning algorithm is developed for frequency predication of patterns that are formed on the Chladni plate and focus...The introduction of machine learning (ML) in the research domain is a new era technique. The machine learning algorithm is developed for frequency predication of patterns that are formed on the Chladni plate and focused on the application of machine learning algorithms in image processing. In the Chladni plate, nodes and antinodes are demonstrated at various excited frequencies. Sand on the plate creates specific patterns when it is excited by vibrations from a mechanical oscillator. In the experimental setup, a rectangular aluminum plate of 16 cm x 16 cm and 0.61 mm thickness was placed over the mechanical oscillator, which was driven by a sine wave signal generator. 14 Chladni patterns are obtained on a Chladni plate and validation is done with modal analysis in Ansys. For machine learning, a large number of data sets are required, as captured around 200 photos of each modal frequency and around 3000 photos with a camera of all 14 Chladni patterns for supervised learning. The current model is written in Python language and model has one convolution layer. The main modules used in this are Tensor Flow Keras, NumPy, CV2 and Maxpooling. The fed reference data is taken for 14 frequencies between 330 Hz to 3910 Hz. In the model, all the images are converted to grayscale and canny edge detected. All patterns of frequencies have an almost 80% - 99% correlation with test sample experimental data. This approach is to form a directory of Chladni patterns for future reference purpose in real-life application. A machine learning algorithm can predict the resonant frequency based on the patterns formed on the Chladni plate.展开更多
It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but ...It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but also consciousness for environmental problem of individual trip maker is important for eco-commuting promotion.On the other hand,consciousness for environment would be changed by influence of other person.Accordingly,it is aimed in the study that the structure of decision-making process for modal shift to the eco-commuting mode in the local city is described considering environmental consciousness and social interaction.For the purpose,the consciousness for the environment problem and the travel behavior of the commuter at the suburban area in the local city are investigated by the questionnaire survey.The covariance structure about the eco-consciousness is analyzed with the database of the questionnaire survey by structural equation modeling.As the result,it can be confirmed with the structural equation model that the individual environmental consciousness is strongly related with the intention of self-sacrifice and is influenced with the local interaction of the individual connections.On the other hand,the intention of modal shift for the commuting mode is analyzed with the database of the questionnaire survey.It can be found out that the environmental consciousness is not statistically significant for commuting mode choice with the present poor level of service of public transport.However,the intention of self-sacrifice for the prevention of the global warming is statistically confirmed as the factor of modal shift with the operation of eco-commuting bus service with the RP/SP integrated estimation method.As the result,the multi-agent simulation system with social interaction model for eco consciousness is developed to measure the effect of the eco-commuting promotion.For the purpose,the carbon dioxide emission is estimated based on traffic demand and road network condition in the traffic environment model.On the other hand,the relation between agents is defined based on the small world network.The proposed multi-agent simulation is applied to measure the effect of the eco-commuting promotion such as improvement of level of service on the public transport or education of eco-consciousness.The effect of the promotion plan can be observed with the proposed multi-agent system.Finally,it can be concluded that the proposed multi-agent simulation with social interaction for eco-consciousness is useful for planning of eco-commuting promotion.展开更多
The ChatGPT,a lite and conversational variant of Generative Pretrained Transformer 4(GPT-4)developed by OpenAI,is one of the milestone Large Language Models(LLMs)with billions of parameters.LLMs have stirred up much i...The ChatGPT,a lite and conversational variant of Generative Pretrained Transformer 4(GPT-4)developed by OpenAI,is one of the milestone Large Language Models(LLMs)with billions of parameters.LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks,which profoundly impact various fields.This paper mainly discusses the future applications of LLMs in dentistry.We introduce two primary LLM deployment methods in dentistry,including automated dental diagnosis and cross-modal dental diagnosis,and examine their potential applications.Especially,equipped with a cross-modal encoder,a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations.We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application.While LLMs offer significant potential benefits,the challenges,such as data privacy,data quality,and model bias,need further study.Overall,LLMs have the potential to revolutionize dental diagnosis and treatment,which indicates a promising avenue for clinical application and research in dentistry.展开更多
Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace id...Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace identification,peak-picking,and frequency domain decomposition method in modal analysis based on ambient excitation,and the effectiveness of these three methods is verified through finite element calculation and numerical simulation,Then the damage element is added to the finite element model to simulate the crack,and the curvature mode difference and the curvature mode area difference square ratio are calculated by using the stochastic subspace identification results to verify their ability of damage identification and location.Finally,the above modal and damage identification techniques are integrated to develop a bridge modal and damage identification software platform.The final results show that all three modal identification methods can accurately identify the vibration frequency and mode shape,both damage identification methods can accurately identify and locate the damage,and the developed software platform is simple and efficient.展开更多
When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fa...When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.展开更多
The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data.We observed,for the first time,that the phenomenon of re...The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data.We observed,for the first time,that the phenomenon of regular variation characteristics of the 14-d spring-neap cycle of diurnal internal tides(ITs)can be regulated by typhoons.The diurnal ITs lost the regular variation characteristics of the 14-d spring-neap cycle during the typhoon period owing to the weakening of diurnal coherent ITs,represented by O_(1)and K_(1),and the strengthening of diurnal incoherent ITs.Results of quantitative analysis showed that during the pre-typhoon period,timeaveraged modal kinetic energy(sum of Modes 1–5)of near-inertial internal waves(NIWs)and diurnal and semidiurnal ITs were 0.62 kJ/m^(2),5.66 kJ/m^(2),and 1.48 kJ/m^(2),respectively.However,during the typhoon period,the modal kinetic energy of NIWs increased 5.11 times,mainly due to the increase in high-mode kinetic energy.At the same time,the modal kinetic energy of diurnal and semidiurnal ITs was reduced by 68.9%and 20%,respectively,mainly due to the decrease in low-mode kinetic energy.The significantly reduced diurnal ITs during the typhoon period could be due to:(1)strong nonlinear interaction between diurnal ITs and NIWs,and(2)a higher proportion of high-mode diurnal ITs during the typhoon period,leading to more energy dissipation.展开更多
Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended perio...Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.展开更多
Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside th...Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside the advantages,depth-sensing also presents many practical challenges.For instance,the depth sensors impose an additional payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost.Additionally,some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime.In this context,this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation performance.An autonomous damage segmentation framework is developed,based on recent advancements in vision-based multi-modal sensing such as modality hallucination(MH)and monocular depth estimation(MDE),which require depth data only during the model training.At the time of deployment,depth data becomes expendable as it can be simulated from the corresponding RGB frames.This makes it possible to reap the benefits of depth fusion without any depth perception per se.This study explored two different depth encoding techniques and three different fusion strategies in addition to a baseline RGB-based model.The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings subjected to seismic damage.It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1%with a negligible increase in the computation cost.Overall,this study is believed to make a positive contribution to enhancing the resilience of critical civil infrastructure.展开更多
In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-v...In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents.展开更多
A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibrat...A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.展开更多
Nowadays,it is extremely urgent for the software engineering education to cultivate the knowledge and ability of database talents in the era of big data.To this end,this paper proposes a talent training teaching modal...Nowadays,it is extremely urgent for the software engineering education to cultivate the knowledge and ability of database talents in the era of big data.To this end,this paper proposes a talent training teaching modality that integrates knowledge,ability,practice,and innovation(KAPI)for Database System Course.The teaching modality contains three parts:top-level design,course learning process,and course assurance and evaluation.The top-level design sorts out the core knowledge of the course and determines a mixed online and offline teaching platform.The course learning process emphasizes the correspondence transformation relationship between core knowledge points and ability enhancement,and the course is practiced in the form of experimental projects to finally enhance students’innovation consciousness and ability.The assurance and evaluation of the course are based on the outcome-based education(OBE)orientation,which realizes the objective evaluation of students’learning process and final performance.The teaching results of the course in the past 2 years show that the KAPI-based teaching modality has achieved better results.Meanwhile,students are satisfied with the evaluation of the modality.The teaching modality in this paper helps to stimulate students’initiatives,and improve their knowledge vision and practical ability,and thus helps to cultivate innovative and high-quality engineering talents required by the emerging engineering education.展开更多
Modal choice models applied to interregional or international freight transportation network models are often based on rather coarse origin-destination matrices, containing annual transported tonnages between (sub)reg...Modal choice models applied to interregional or international freight transportation network models are often based on rather coarse origin-destination matrices, containing annual transported tonnages between (sub)regions, for instance. Generally, only basic (sometimes constructed) independent variables (transportation costs or transit times) are used because other variables such as shipment sizes, service frequencies, etc. are not available. Using origin-destination matrices and an assignment model, it is also possible to compute spatial accessibility measures that can further be used as additional explanatory variables. Indeed, several published studies have identified network accessibility as an important element in the mode-choice decision. This paper also shows that the inclusion of an accessibility measure in the utility functions of a logit model substantially improves the performance of a transportation network model, both in the modal choice and the assignment levels of the classical four-step model. Consequently, the assignment of the estimated modal demands results in more accurate estimated traffic on the networks. The model presented in this paper is to be considered as a proof of concept because its workflow should further be streamlined to make it easily useable by modelers.展开更多
Oscillating water column wave energy converter is a power generation device in which ocean waves excite the oscillation of the water surface in an air chamber, which generates fluctuations in air pressure and rotate a...Oscillating water column wave energy converter is a power generation device in which ocean waves excite the oscillation of the water surface in an air chamber, which generates fluctuations in air pressure and rotate air turbine generator(s). The oscillation of the fluid in the air chamber is a fluid oscillation phenomenon with a natural period, similar to fluid oscillation in a container such as sloshing. Previous research has shown that for an oscillating water column with a single air chamber submerged in water, the oscillation characteristics can be modeled as a one-degree-of-freedom oscillation system that takes only a single oscillation mode into account. However, a double-slit breakwater integrated oscillating water column wave energy converter using two water columns of the breakwater separated by slit walls, has been verified to have two resonance periods. In this study, the free oscillating motion of the oscillating water column wave energy converter using the double-slit breakwater is modeled by modal superposition method including the first-order and second-order modes of vertical motion of the two water surfaces. The result from the simulation is similar to the result of the free vibration experiment.展开更多
The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connec...The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.展开更多
As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performan...As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.展开更多
A recent special topic in the Journal of Sport and Health Science reported the health benefits conferred by traditional and innovative m-health exercise and multimodal programs with respect to several types of cancer....A recent special topic in the Journal of Sport and Health Science reported the health benefits conferred by traditional and innovative m-health exercise and multimodal programs with respect to several types of cancer.1 A possible mechanism behind this protective effect could be enhanced cancer immunosurveillance.展开更多
Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and oper...Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and operating conditions in the industrial processes, existing data-driven methods cannot effectively adjust the operational variables. In addition, multimodal data such as images, audio.展开更多
In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power su...In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.展开更多
基金supported by the research fund of Chungnam National University in 2022。
文摘International guidelines for post-cardiac arrest care recommend using multi-modal strategies to avoid the withdrawal of life-sustaining therapy(WLST)in patients with the potential for neurological recovery.[1]However,a clear methodology for multi-modal approaches has yet to be developed.Neuron-specific enolase(NSE)is currently the only recommended biomarker,and the European Resuscitation Council(ERC)and the European SocietyofIntensiveCareMedicine(ESICM)have proposed a cutoff value of 60μg/L at 48 and/or 72 h after the return of spontaneous circulation(ROSC)as a multimodal prognostic tool for predicting poor neurological outcomes.
文摘A 68-years old woman presented with ahistory of recurrent fever of 38-39°ac-companied by chills and weakness over the past month.Her physical examination was unremarkable except for an audible 3/6 ejection murmur at the 2nd right intercostal space.Her vital signs were normal with no fever at presentation.Laboratory tests showed elevated white blood count of 11,800cells/mm3 with a remarkable neutrophilia and elevated C-reactive protein of 14 mg/dL.Blood glucose,renal and liver function tests were all normal.
文摘The introduction of machine learning (ML) in the research domain is a new era technique. The machine learning algorithm is developed for frequency predication of patterns that are formed on the Chladni plate and focused on the application of machine learning algorithms in image processing. In the Chladni plate, nodes and antinodes are demonstrated at various excited frequencies. Sand on the plate creates specific patterns when it is excited by vibrations from a mechanical oscillator. In the experimental setup, a rectangular aluminum plate of 16 cm x 16 cm and 0.61 mm thickness was placed over the mechanical oscillator, which was driven by a sine wave signal generator. 14 Chladni patterns are obtained on a Chladni plate and validation is done with modal analysis in Ansys. For machine learning, a large number of data sets are required, as captured around 200 photos of each modal frequency and around 3000 photos with a camera of all 14 Chladni patterns for supervised learning. The current model is written in Python language and model has one convolution layer. The main modules used in this are Tensor Flow Keras, NumPy, CV2 and Maxpooling. The fed reference data is taken for 14 frequencies between 330 Hz to 3910 Hz. In the model, all the images are converted to grayscale and canny edge detected. All patterns of frequencies have an almost 80% - 99% correlation with test sample experimental data. This approach is to form a directory of Chladni patterns for future reference purpose in real-life application. A machine learning algorithm can predict the resonant frequency based on the patterns formed on the Chladni plate.
基金The research is granted by Japanese Ministry of Education as a part of Grants-in-Aid for Scientific Research,No.(C)22560533.The author records here warmest appreciation to the Resident Conference for Environment of Tokushima Prefecture for collecting the data in the field of actual travel behavior on the social experiment.
文摘It is the matter for achievement of the low carbon transport system that the excessive use of private vehicles can be controlled appropriately.Not only improvement of service level of modes except private vehicle,but also consciousness for environmental problem of individual trip maker is important for eco-commuting promotion.On the other hand,consciousness for environment would be changed by influence of other person.Accordingly,it is aimed in the study that the structure of decision-making process for modal shift to the eco-commuting mode in the local city is described considering environmental consciousness and social interaction.For the purpose,the consciousness for the environment problem and the travel behavior of the commuter at the suburban area in the local city are investigated by the questionnaire survey.The covariance structure about the eco-consciousness is analyzed with the database of the questionnaire survey by structural equation modeling.As the result,it can be confirmed with the structural equation model that the individual environmental consciousness is strongly related with the intention of self-sacrifice and is influenced with the local interaction of the individual connections.On the other hand,the intention of modal shift for the commuting mode is analyzed with the database of the questionnaire survey.It can be found out that the environmental consciousness is not statistically significant for commuting mode choice with the present poor level of service of public transport.However,the intention of self-sacrifice for the prevention of the global warming is statistically confirmed as the factor of modal shift with the operation of eco-commuting bus service with the RP/SP integrated estimation method.As the result,the multi-agent simulation system with social interaction model for eco consciousness is developed to measure the effect of the eco-commuting promotion.For the purpose,the carbon dioxide emission is estimated based on traffic demand and road network condition in the traffic environment model.On the other hand,the relation between agents is defined based on the small world network.The proposed multi-agent simulation is applied to measure the effect of the eco-commuting promotion such as improvement of level of service on the public transport or education of eco-consciousness.The effect of the promotion plan can be observed with the proposed multi-agent system.Finally,it can be concluded that the proposed multi-agent simulation with social interaction for eco-consciousness is useful for planning of eco-commuting promotion.
基金supported by the Research and Development Program,West China Hospital of Stomatology,Sichuan University(RD-02-202107)Sichuan Province Science and Technology Support Program(2022NSFSC0743)Sichuan Postdoctoral Science Foundation(TB2022005)grant to H.Huang.
文摘The ChatGPT,a lite and conversational variant of Generative Pretrained Transformer 4(GPT-4)developed by OpenAI,is one of the milestone Large Language Models(LLMs)with billions of parameters.LLMs have stirred up much interest among researchers and practitioners in their impressive skills in natural language processing tasks,which profoundly impact various fields.This paper mainly discusses the future applications of LLMs in dentistry.We introduce two primary LLM deployment methods in dentistry,including automated dental diagnosis and cross-modal dental diagnosis,and examine their potential applications.Especially,equipped with a cross-modal encoder,a single LLM can manage multi-source data and conduct advanced natural language reasoning to perform complex clinical operations.We also present cases to demonstrate the potential of a fully automatic Multi-Modal LLM AI system for dentistry clinical application.While LLMs offer significant potential benefits,the challenges,such as data privacy,data quality,and model bias,need further study.Overall,LLMs have the potential to revolutionize dental diagnosis and treatment,which indicates a promising avenue for clinical application and research in dentistry.
文摘Modal and damage identification based on ambient excitation can greatly improve the efficiency of high-speed railway bridge vibration detection.This paper first describes the basic principles of stochastic subspace identification,peak-picking,and frequency domain decomposition method in modal analysis based on ambient excitation,and the effectiveness of these three methods is verified through finite element calculation and numerical simulation,Then the damage element is added to the finite element model to simulate the crack,and the curvature mode difference and the curvature mode area difference square ratio are calculated by using the stochastic subspace identification results to verify their ability of damage identification and location.Finally,the above modal and damage identification techniques are integrated to develop a bridge modal and damage identification software platform.The final results show that all three modal identification methods can accurately identify the vibration frequency and mode shape,both damage identification methods can accurately identify and locate the damage,and the developed software platform is simple and efficient.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.51109158,U2106223)the Science and Technology Development Plan Program of Tianjin Municipal Transportation Commission(Grant No.2022-48)。
文摘When investigating the vortex-induced vibration(VIV)of marine risers,extrapolating the dynamic response on the entire length based on limited sensor measurements is a crucial step in both laboratory experiments and fatigue monitoring of real risers.The problem is conventionally solved using the modal decomposition method,based on the principle that the response can be approximated by a weighted sum of limited vibration modes.However,the method is not valid when the problem is underdetermined,i.e.,the number of unknown mode weights is more than the number of known measurements.This study proposed a sparse modal decomposition method based on the compressed sensing theory and the Compressive Sampling Matching Pursuit(Co Sa MP)algorithm,exploiting the sparsity of VIV in the modal space.In the validation study based on high-order VIV experiment data,the proposed method successfully reconstructed the response using only seven acceleration measurements when the conventional methods failed.A primary advantage of the proposed method is that it offers a completely data-driven approach for the underdetermined VIV reconstruction problem,which is more favorable than existing model-dependent solutions for many practical applications such as riser structural health monitoring.
基金The National Key Research and Development Program under contract No.2021YFC3101300the CAS Key Laboratory of Science and Technology on Operational Oceanography under contract No.OOST2021-07the fund supported by the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.SML2021SP102.
文摘The influence of Typhoon Kalmaegi on internal waves near the Dongsha Islands in the northeastern South China Sea was investigated using mooring observation data.We observed,for the first time,that the phenomenon of regular variation characteristics of the 14-d spring-neap cycle of diurnal internal tides(ITs)can be regulated by typhoons.The diurnal ITs lost the regular variation characteristics of the 14-d spring-neap cycle during the typhoon period owing to the weakening of diurnal coherent ITs,represented by O_(1)and K_(1),and the strengthening of diurnal incoherent ITs.Results of quantitative analysis showed that during the pre-typhoon period,timeaveraged modal kinetic energy(sum of Modes 1–5)of near-inertial internal waves(NIWs)and diurnal and semidiurnal ITs were 0.62 kJ/m^(2),5.66 kJ/m^(2),and 1.48 kJ/m^(2),respectively.However,during the typhoon period,the modal kinetic energy of NIWs increased 5.11 times,mainly due to the increase in high-mode kinetic energy.At the same time,the modal kinetic energy of diurnal and semidiurnal ITs was reduced by 68.9%and 20%,respectively,mainly due to the decrease in low-mode kinetic energy.The significantly reduced diurnal ITs during the typhoon period could be due to:(1)strong nonlinear interaction between diurnal ITs and NIWs,and(2)a higher proportion of high-mode diurnal ITs during the typhoon period,leading to more energy dissipation.
基金financially supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2020E016)the National Natural Science Foundation of China (Grant No.11472076)。
文摘Offshore platforms are susceptible to structural damage due to prolonged exposure to random loads,such as wind,waves,and currents.This is particularly true for platforms that have been in service for an extended period.Identifying the modal parameters of offshore platforms is crucial for damage diagno sis,as it serves as a prerequisite and foundation for the process.Therefore,it holds great significance to prioritize the identification of these parameters.Aiming at the shortcomings of the traditional Fast Bayesian Fast Fourier Transform(FBFFT) method,this paper proposes a modal parameter identification method based on Automatic Frequency Domain Decomposition(AFDD) and optimized FBFFT.By introducing the AFDD method and Powell optimization algorithm,this method can automatically identify the initial value of natural frequency and solve the objective function efficiently and simply.In order to verify the feasibility and effectiveness of the proposed method,it is used to identify the modal parameters of the IASC-ASCE benchmark model and the j acket platform structure model,and the Most Probable Value(MPV) of the modal parameters and their respective posterior uncertainties are successfully identified.The identification results of the IASC-ASCE benc hmark model are compared with the identification re sults of the MODE-ID method,which verifies the effectivene ss and accuracy of the proposed method for identifying modal parameters.It provides a simple and feasible method for quantifying the influence of uncertain factors such as environmental parameters on the identification results,and also provide s a reference for modal parameter identification of other large structures.
基金supported in part by a fund from Bentley Systems,Inc.
文摘Recent advances in computer vision and deep learning have shown that the fusion of depth information can significantly enhance the performance of RGB-based damage detection and segmentation models.However,alongside the advantages,depth-sensing also presents many practical challenges.For instance,the depth sensors impose an additional payload burden on the robotic inspection platforms limiting the operation time and increasing the inspection cost.Additionally,some lidar-based depth sensors have poor outdoor performance due to sunlight contamination during the daytime.In this context,this study investigates the feasibility of abolishing depth-sensing at test time without compromising the segmentation performance.An autonomous damage segmentation framework is developed,based on recent advancements in vision-based multi-modal sensing such as modality hallucination(MH)and monocular depth estimation(MDE),which require depth data only during the model training.At the time of deployment,depth data becomes expendable as it can be simulated from the corresponding RGB frames.This makes it possible to reap the benefits of depth fusion without any depth perception per se.This study explored two different depth encoding techniques and three different fusion strategies in addition to a baseline RGB-based model.The proposed approach is validated on computer-generated RGB-D data of reinforced concrete buildings subjected to seismic damage.It was observed that the surrogate techniques can increase the segmentation IoU by up to 20.1%with a negligible increase in the computation cost.Overall,this study is believed to make a positive contribution to enhancing the resilience of critical civil infrastructure.
基金supported by the National Natural Science Foundation of China(No.52007138)the Natural Science Basis Research Plan in Shaanxi Province of China(No.2022JQ-568)the Key Research and Development Program of Shaanxi Province(No.2023-YBGY-069).
文摘In the harsh environment,the structural health of the anti-vibration hammer,which suffers from the coupled effects of corrosion and fatigue damage,is significantly reduced.As part of the conductor structure,the anti-vibration hammer is rigidly attached to the conductor,effectively suppressing conductor vibration.The conductor’s breeze vibration law and natural modal frequency are altered damage to the anti-vibration hammer structure.Through built a vibration experiment platform to simulate multiple faults such as anti-vibration hammer head drop off and position slippage,which to obtained the vibration acceleration signal of the conductor.The acceleration vibration signal is processed and analyzed in the time and frequency domains.The results are used to derive the breeze vibration law of the conductor under multiple faults and propose an anti-vibration hammer damage online monitoring technology.The results show that the vibration acceleration value and vibration intensity of the conductor are significantly increased after the anti-vibration hammer damage.The natural frequency increases for each order,with an absolute change ranging from 0.15 to 6.49 Hz.The anti-vibration hammer slipped due to a loose connection,the 1st natural frequency increases from 8.18 to 16.62 Hz.Therefore,in engineering applications,there can be no contact to determine the anti-vibration hammer damage situation by monitoring the modal natural frequency of the conductor.This is even a tiny damage that cannot be seen.This method will prevent the further expansion of the damage that can cause accidents.
文摘A case study of excessive vibration on a motor-compressor system is presented in this paper.After barely two months of operation,the reciprocating compressor motor’s routine monitoring revealed excessive axial vibration amplitude.For this reason,the Operational Modal Analysis(OMA)was carried out in order to identify the pri-mary cause.According to the investigation,one of the harmonic components which was 18 times the motor’s running speed matched with a resonance frequency of 112 Hz.According to OMA study,the motor was vibrating in torsional motion because the compressor’s load had stimulated the entire motor-compressor unit at this reso-nance frequency.The analysis also demonstrates the bulging effect of the motor shaft’s axial vibration on the motor’s endplate.
基金the support from the General Program of the Educational Teaching Reform Research Project of Northwestern Polytechnical University(Grant No.2023JGY35)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515110252)+1 种基金the Double First-class Construction Foundation(Grant No.22GH010616)the Northwestern Polytechnical University of Graduate Student Quality Improvement Program(Grant No.22GZ210101)。
文摘Nowadays,it is extremely urgent for the software engineering education to cultivate the knowledge and ability of database talents in the era of big data.To this end,this paper proposes a talent training teaching modality that integrates knowledge,ability,practice,and innovation(KAPI)for Database System Course.The teaching modality contains three parts:top-level design,course learning process,and course assurance and evaluation.The top-level design sorts out the core knowledge of the course and determines a mixed online and offline teaching platform.The course learning process emphasizes the correspondence transformation relationship between core knowledge points and ability enhancement,and the course is practiced in the form of experimental projects to finally enhance students’innovation consciousness and ability.The assurance and evaluation of the course are based on the outcome-based education(OBE)orientation,which realizes the objective evaluation of students’learning process and final performance.The teaching results of the course in the past 2 years show that the KAPI-based teaching modality has achieved better results.Meanwhile,students are satisfied with the evaluation of the modality.The teaching modality in this paper helps to stimulate students’initiatives,and improve their knowledge vision and practical ability,and thus helps to cultivate innovative and high-quality engineering talents required by the emerging engineering education.
文摘Modal choice models applied to interregional or international freight transportation network models are often based on rather coarse origin-destination matrices, containing annual transported tonnages between (sub)regions, for instance. Generally, only basic (sometimes constructed) independent variables (transportation costs or transit times) are used because other variables such as shipment sizes, service frequencies, etc. are not available. Using origin-destination matrices and an assignment model, it is also possible to compute spatial accessibility measures that can further be used as additional explanatory variables. Indeed, several published studies have identified network accessibility as an important element in the mode-choice decision. This paper also shows that the inclusion of an accessibility measure in the utility functions of a logit model substantially improves the performance of a transportation network model, both in the modal choice and the assignment levels of the classical four-step model. Consequently, the assignment of the estimated modal demands results in more accurate estimated traffic on the networks. The model presented in this paper is to be considered as a proof of concept because its workflow should further be streamlined to make it easily useable by modelers.
文摘Oscillating water column wave energy converter is a power generation device in which ocean waves excite the oscillation of the water surface in an air chamber, which generates fluctuations in air pressure and rotate air turbine generator(s). The oscillation of the fluid in the air chamber is a fluid oscillation phenomenon with a natural period, similar to fluid oscillation in a container such as sloshing. Previous research has shown that for an oscillating water column with a single air chamber submerged in water, the oscillation characteristics can be modeled as a one-degree-of-freedom oscillation system that takes only a single oscillation mode into account. However, a double-slit breakwater integrated oscillating water column wave energy converter using two water columns of the breakwater separated by slit walls, has been verified to have two resonance periods. In this study, the free oscillating motion of the oscillating water column wave energy converter using the double-slit breakwater is modeled by modal superposition method including the first-order and second-order modes of vertical motion of the two water surfaces. The result from the simulation is similar to the result of the free vibration experiment.
文摘The connecting rod is one of the most important moving components in an internal combustion engine. The present work determined the possibility of using aluminium alloy 7075 material to design and manufacture a connecting rod for weight optimisation without losing the strength of the connecting rod. It considered modal and thermal analyses to investigate the suitability of the material for connecting rod design. The parameters that were considered under the modal analysis were: total deformation, and natural frequency, while the thermal analysis looked at the temperature distribution, total heat flux and directional heat flux of the four connecting rods made with titanium alloy, grey cast iron, structural steel and aluminium 7075 alloy respectively. The connecting rod was modelled using Autodesk inventor2017 software using the calculated parameters. The steady-state thermal analysis was used to determine the induced heat flux and directional heat flux. The study found that Aluminium 7075 alloy deformed more than the remaining three other materials but has superior qualities in terms of vibrational natural frequency, total heat flux and lightweight compared to structural steel, grey cast iron and titanium alloy.
基金Supported by Fundamental Research Funds for the Central Universities of China (Grant No.2023JBZY020)Transformation Cultivation Program of Scientific and Technological Achievements from Beijing Jiaotong University of China (Grant No.M21ZZ200010)。
文摘As a new grinding and maintenance technology,rail belt grinding shows significant advantages in many applications The dynamic characteristics of the rail belt grinding vehicle largely determines its grinding performance and service life.In order to explore the vibration control method of the rail grinding vehicle with abrasive belt,the vibration response changes in structural optimization and lightweight design are respectively analyzed through transient response and random vibration simulations in this paper.Firstly,the transient response simulation analysis of the rail grinding vehicle with abrasive belt is carried out under operating conditions and non-operating conditions.Secondly,the vibration control of the grinding vehicle is implemented by setting vibration isolation elements,optimizing the structure,and increasing damping.Thirdly,in order to further explore the dynamic characteristics of the rail grinding vehicle,the random vibration simulation analysis of the grinding vehicle is carried out under the condition of the horizontal irregularity of the American AAR6 track.Finally,by replacing the Q235 steel frame material with 7075 aluminum alloy and LA43M magnesium alloy,both vibration control and lightweight design can be achieved simultaneously.The results of transient dynamic response analysis show that the acceleration of most positions in the two working conditions exceeds the standard value in GB/T 17426-1998 standard.By optimizing the structure of the grinding vehicle in three ways,the average vibration acceleration of the whole car is reduced by about 55.1%from 15.6 m/s^(2) to 7.0 m/s^(2).The results of random vibration analysis show that the grinding vehicle with Q235 steel frame does not meet the safety conditions of 3σ.By changing frame material,the maximum vibration stress of the vehicle can be reduced from 240.7 MPa to 160.0 MPa and the weight of the grinding vehicle is reduced by about 21.7%from 1500 kg to 1175 kg.The modal analysis results indicate that the vibration control of the grinding vehicle can be realized by optimizing the structure and replacing the materials with lower stiffness under the premise of ensuring the overall strength.The study provides the basis for the development of lightweight,diversified and efficient rail grinding equipment.
基金supported in part by NIH Grant No.U01 TR002004(REACH project)funded by the Wereld Kanker Onderzoek Fonds(WKOF)as part of the World Cancer Research Fund International grant program+5 种基金the Spanish Ministry of Science and Innovation(Fondo de Investigaciones Sanitarias(FIS))Fondos FEDER(Grant No.ssPI 18/00139)Fondos FEDER(Grants No.PI20/00645,PI23/00396,and FORT23/00023)funded by the Spanish Ministry of Science and Innovation(FIS)the Ministerio de Ciencia e Innovacion(Grant No.CNS2023-144144)a Miguel Servet postdoctoral contract granted by Instituto de Salud CarlosⅢ(CP18/00034)。
文摘A recent special topic in the Journal of Sport and Health Science reported the health benefits conferred by traditional and innovative m-health exercise and multimodal programs with respect to several types of cancer.1 A possible mechanism behind this protective effect could be enhanced cancer immunosurveillance.
基金supported by the National Key Research and Development Program of China (2020YFB1713800)the National Natural Science Foundation of China (92267205)+1 种基金the Hunan Provincial Innovation Foundation for Postgraduate (CX2022 0267)the Fundamental Research Funds for the Central Universities of Central South University (2022ZZTS0181)。
文摘Dear Editor, This letter proposes a multimodal data-driven reinforcement learning-based method for operational decision-making in industrial processes. Due to the frequent fluctuations of feedstock properties and operating conditions in the industrial processes, existing data-driven methods cannot effectively adjust the operational variables. In addition, multimodal data such as images, audio.
基金supported by the National Natural Science Foundation of China(Grant No.62063016).
文摘In a“low-carbon”context,the power load is affected by the coupling of multiple factors,which gradually evolves from the traditional“pure load”to the generalized load with the dual characteristics of“load+power supply.”Traditional time-series forecasting methods are no longer suitable owing to the complexity and uncertainty associated with generalized loads.From the perspective of image processing,this study proposes a graphical short-term prediction method for generalized loads based on modal decomposition.First,the datasets are normalized and feature-filtered by comparing the results of Xtreme gradient boosting,gradient boosted decision tree,and random forest algorithms.Subsequently,the generalized load data are decomposed into three sets of modalities by modal decomposition,and red,green,and blue(RGB)images are generated using them as the pixel values of the R,G,and B channels.The generated images are diversified,and an optimized DenseNet neural network was used for training and prediction.Finally,the base load,wind power,and photovoltaic power generation data are selected,and the characteristic curves of the generalized load scenarios under different permeabilities of wind power and photovoltaic power generation are obtained using the density-based spatial clustering of applications with noise algorithm.Based on the proposed graphical forecasting method,the feasibility of the generalized load graphical forecasting method is verified by comparing it with the traditional time-series forecasting method.