In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Us...In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.展开更多
The purpose of this paper is to establish sev eral identities containing Gaussian binomial coefficient. These results generali ze several Mercier's results. Key words:Gaussian binomial coefficient; identity; the ...The purpose of this paper is to establish sev eral identities containing Gaussian binomial coefficient. These results generali ze several Mercier's results. Key words:Gaussian binomial coefficient; identity; the functio n A(T,T 2,...,T n)culating eige nvalues of auto-correlation matrix of the physical control force of actuators. T he optimization algorithm calculating the optimal actuator placement is then put forward via the minimization of an energy criterion, which is chosen as the con trol index. Numerical examples show the effectiveness of the proposed method.展开更多
This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure informat...This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.展开更多
文摘In recent decades,several optimization algorithms have been developed for selecting the most energy efficient clusters in order to save power during trans-mission to a shorter distance while restricting the Primary Users(PUs)interfer-ence.The Cognitive Radio(CR)system is based on the Adaptive Swarm Distributed Intelligent based Clustering algorithm(ASDIC)that shows better spectrum sensing among group of multiusers in terms of sensing error,power sav-ing,and convergence time.In this research paper,the proposed ASDIC algorithm develops better energy efficient distributed cluster based sensing with the optimal number of clusters on their connectivity.In this research,multiple random Sec-ondary Users(SUs),and PUs are considered for implementation.Hence,the pro-posed ASDIC algorithm improved the convergence speed by combining the multi-users clustered communication compared to the existing optimization algo-rithms.Experimental results showed that the proposed ASDIC algorithm reduced the node power of 9.646%compared to the existing algorithms.Similarly,ASDIC algorithm reduced 24.23%of SUs average node power compared to the existing algorithms.Probability of detection is higher by reducing the Signal-to-Noise Ratio(SNR)to 2 dB values.The proposed ASDIC delivers low false alarm rate compared to other existing optimization algorithms in the primary detection.Simulation results showed that the proposed ASDIC algorithm effectively solves the multimodal optimization problems and maximizes the performance of net-work capacity.
文摘The purpose of this paper is to establish sev eral identities containing Gaussian binomial coefficient. These results generali ze several Mercier's results. Key words:Gaussian binomial coefficient; identity; the functio n A(T,T 2,...,T n)culating eige nvalues of auto-correlation matrix of the physical control force of actuators. T he optimization algorithm calculating the optimal actuator placement is then put forward via the minimization of an energy criterion, which is chosen as the con trol index. Numerical examples show the effectiveness of the proposed method.
基金supported by National Natural Science Foundation of China(No.61201425)the Natural Science Foundation of Jiangsu Province(No.BK20131280)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘This work proposes a method to concurrently calibrate multiple acoustic speeds in different mediums with a photoacoustic(PA) and ultrasound(US) dual-modality imaging system. First, physical infrastructure information of the target is acquired through a US image. Then, we repeatedly build PA images around a special target to yield the best focused result by dynamically updating the acoustic speeds in a different medium of the target.With these correct acoustic propagation velocities in the according mediums, we can effectively optimize the PA image quality as the experiments proved, which might benefit future research in biomedical imaging science.