A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic...A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.展开更多
A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineeri...A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.展开更多
A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and fr...A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.展开更多
A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation. The model is inspired by the distribution of the measured in-plane and out-of-plane deformatio...A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation. The model is inspired by the distribution of the measured in-plane and out-of-plane deformation. The in- plane displacement of crack-tip fields under both Mode 1 and mixed-mode (Mode I-II) fracture conditions is measured by using the digital Moir6 method. The deformation character- istics and experimental sector division mode are investigated by comparing the measured displacement fields under differ- ent fracture modes. The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.展开更多
A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase, elastic deformation ...A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, and stress and strain have the same singularity, namely, (σ-e)∝r^-1/(n-1). The asymptotic solution of separating variables of stress, stain and displacement in the crack-tip field was obtained by asymptotic analysis, and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack. Through numerical calculation, it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M. When n →∞, the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.展开更多
The fundamental objective of this paper is to study the effectiveness of magnetic field and gravity on an isotropic homogeneous thermoelastic structure based on four theories of generalized thermoelasticity.In another...The fundamental objective of this paper is to study the effectiveness of magnetic field and gravity on an isotropic homogeneous thermoelastic structure based on four theories of generalized thermoelasticity.In another meaning,the models of coupled dynamic theory(CDT),Lord-Shulman(LS),Green-Lindsay(GL)as well as Green-Naghdi(GN II)will be taken in the consideration.Then,applying the harmonic method(normal mode technique),the solution of the governing equations and the expressions for the components of the displacement,temperature and(Mechanical and Maxwell’s)stresses is taken into account and calculated numerically.The impacts of the gravity and magnetic field are illustrated graphically which are pronounced on the different physical quantities.Finally,the results of some research that others have previously obtained may be found some or all of them as special cases from this study.展开更多
基金the Natural Science Foundation of Heilongjiang Province(A009).
文摘A mechanical model is established for mode II interfacial crack static growing along an elastic-elastic power law creeping bimaterial interface. For frictional contact of boundary conditions on crack faces, asymptotic solutions of the stresses and strains of near tip-crack are got. It was shown that in stable creep growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, the stress and strain have the same singularity and there is not the oscillatory singularity the field. Through numerical calculation , it is shown that the frictional coefficient η notably influence the crack-tip field.
基金Supported by Heilongjiang Province Foundation under Grant No.LC08C02
文摘A mechanical model of the quasi-static interface of a mode I crack between a rigid and a pressure-sensitive viscoelastic material was established to investigate the mechanical characteristic of ship-building engineering hi-materials. In the stable growth stage, stress and strain have the same singularity, ie (σ, ε) ∝ r^-1/(n-1). The variable-separable asymptotic solutions of stress and strain at the crack tip were obtained by adopting Airy's stress function and the numerical results of stress and strain in the crack-tip field were obtained by the shooting method. The results showed that the near-tip fields are mainly governed by the power-hardening exponent n and the Poisson ratio v of the pressure-sensitive material. The fracture criterion of mode I quasi-static crack growth in pressure-sensitive materials, according to the asymptotic analyses of the crack-tip field, can be viewed from the perspective of strain.
基金theNaturalScienceFoundationofHeilongjiangProvince China (A0 0 9)
文摘A mechanical model was established for modeⅡinterfacial crack static growing along an elastic_elastic power law creeping bimaterial interface. For two kinds of boundary conditions on crack faces, traction free and frictional contact, asymptotic solutions of the stress and strain near tip_crack were given. Results derived indicate that the stress and strain have the same singularity, there is not the oscillatory singularity in the field; the creep power_hardening index n and the ratio of Young's module notably influence the crack_tip field in region of elastic power law creeping material and n only influences distribution of stresses and strains in region of elastic material. When n is bigger, the creeping deformation is dominant and stress fields become steady,which does not change with n. Poisson's ratio does not affect the distributing of the crack_tip field.
基金supported by the National Natural Science Foundation of China (10732080 and 11102134)
文摘A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation. The model is inspired by the distribution of the measured in-plane and out-of-plane deformation. The in- plane displacement of crack-tip fields under both Mode 1 and mixed-mode (Mode I-II) fracture conditions is measured by using the digital Moir6 method. The deformation character- istics and experimental sector division mode are investigated by comparing the measured displacement fields under differ- ent fracture modes. The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.
基金Supported by the Nature foundation of Heilongjiang Province under Grant No. A009 the foundation of Harbin Engineering University under Grant No. HEUF04005.
文摘A mechanical model of a fracturing viscoelastic material was developed to investigate viscous effects in a dynamically growing crack-tip field. It was shown that in the stable creep-growing phase, elastic deformation and viscous deformation are equally dominant in the near-tip field, and stress and strain have the same singularity, namely, (σ-e)∝r^-1/(n-1). The asymptotic solution of separating variables of stress, stain and displacement in the crack-tip field was obtained by asymptotic analysis, and the resulting numerical value of stress and strain in the crack-tip field was obtained by the shooting method and the boundary condition of a mode I crack. Through numerical calculation, it was shown that the near-tip fields are mainly governed by the creep exponent n and Mach number M. When n →∞, the asymptotic solution of a viscoelastic material can be degenerated into that of Freund's elastic-ideally plastic material by analyzing basic equations.
文摘The fundamental objective of this paper is to study the effectiveness of magnetic field and gravity on an isotropic homogeneous thermoelastic structure based on four theories of generalized thermoelasticity.In another meaning,the models of coupled dynamic theory(CDT),Lord-Shulman(LS),Green-Lindsay(GL)as well as Green-Naghdi(GN II)will be taken in the consideration.Then,applying the harmonic method(normal mode technique),the solution of the governing equations and the expressions for the components of the displacement,temperature and(Mechanical and Maxwell’s)stresses is taken into account and calculated numerically.The impacts of the gravity and magnetic field are illustrated graphically which are pronounced on the different physical quantities.Finally,the results of some research that others have previously obtained may be found some or all of them as special cases from this study.