期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
The Altun Fault: Its Geometry, Nature and Mode of Growth 被引量:5
1
作者 崔军文 李莉 +4 位作者 杨经绥 岳永军 李朋武 张建新 陈文 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第2期133-143,共11页
The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours incl... The Altun (or Altyn Tagh) fault displays a geometry of overlapping of linear and arcuate segments and shows strong inhomogeneity in time and space. It is a gigantic fault system with complex mechanical behaviours including thrusting, sinistral strike slip and normal slip. The strike slip and normal slip mainly occurred in the Cretaceous—Cenozoic and Plio-Quaternary respectively, whereas the thrusting was a deformation event that has played a dominant role since the late Palaeozoic (for a duration of about 305 Ma). The formation of the Altun fault was related to strong inhomogeneous deformation of the massifs on its two sides (in the hinterland of the Altun Mountains contractional deformation predominated and in the Qilian massif thrust propagation was dominant). The fault experienced a dynamic process of successive break-up and connection of its segments and gradual propagation, which was synchronous with the development of an overstep thrust sequence in the Qilian massif and the uplift of the Qinghai-Tibet plateau. With southward propagation of the thrust sequence and continued uplift of the plateau, the NE tip of the Altun fault moved in a NE direction, while the SW tip grew in a SW direction. 展开更多
关键词 Altun (Altyn Tagh) fault thrust sequence propagation sinistral strike-slip mode of growth
下载PDF
Storm-scale ensemble forecast based on breeding of growth modes
2
作者 Feng Gao JinZhong Min FanYou Kong 《Research in Cold and Arid Regions》 2011年第1期61-69,共9页
How to obtain fast-growth errors, which is comparable to the actual forecast growth error, is a crucial problem in ensemble forecast (EF). The method, Breeding of Growth Modes (BGM), which has been used to generat... How to obtain fast-growth errors, which is comparable to the actual forecast growth error, is a crucial problem in ensemble forecast (EF). The method, Breeding of Growth Modes (BGM), which has been used to generate perturbations for medium-range EF at NCEP, simulates the development of fast-growth errors in the analysis cycle, and is a reasonable choice in capturing growing errors modes, especially for extreme weather by BGM. An ideal supercell storm, simulated by Weather Research Forecast model (WRF), occurred in central Oklahoma on 20 May 1977. This simulation was used to study the application of BGM methods in the meso-scale strong convective Ensemble Prediction System (EPS). We compared the forecasting skills of EPS by different pertubation methods, like Monte-Carlo and BGM. The results show that the ensemble average forecast based on Monte-Carlo with statistics meaning is superior to the single-deterministic prediction, but a less dynamic process of the method leads to a smaller spread than expected. The fast-growth errors of BGM are comparable to the actual short-range forecast error and a more appropriate ensemble spread. Considering evaluation indexes and scores, the forecast skills of EPS by BGM is higher than Monte-Carlo's. Furthermore, various breeding cycles have different effects on precipitation and non-precipitation fields, confirmation of reasonable cycles need consider balance between variables. 展开更多
关键词 storm scale ensemble forecast Monte-Carlo breeding of growth modes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部