The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Tran...The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.展开更多
A number of mathematical modelling techniques exist which are used to measure the performance of a given system, by assessing each individual component within the system. This can be used to determine the failure freq...A number of mathematical modelling techniques exist which are used to measure the performance of a given system, by assessing each individual component within the system. This can be used to determine the failure frequency or probability of the system. Software is available to undertake the task of analysing these mathematical models after an individual or group of individuals manually create the models. The process of generating these models is time consuming and reduces the impact of the model on the system design. One way to improve this would be to generate the model automatically. In this work, the procedure to automatically construct a model, based on Petri nets, for systems undergoing a phased-mission is applied to a pressure tank system, undertaking a four phase mission.展开更多
基金financially supported by the National Basic Research Program (973 Program) of the Ministry of Science and Technology of the People's Republic of China (Grant No.2011CB013605)the Research Program of Ministry of Transport of the People's Republic of China (Grant No.2013318800020)
文摘The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.
文摘A number of mathematical modelling techniques exist which are used to measure the performance of a given system, by assessing each individual component within the system. This can be used to determine the failure frequency or probability of the system. Software is available to undertake the task of analysing these mathematical models after an individual or group of individuals manually create the models. The process of generating these models is time consuming and reduces the impact of the model on the system design. One way to improve this would be to generate the model automatically. In this work, the procedure to automatically construct a model, based on Petri nets, for systems undergoing a phased-mission is applied to a pressure tank system, undertaking a four phase mission.