This paper investigates the problem of non-fragile observer-based passive control for descriptor systems with time-delay. The perturbations in both the control gain and observer gain of the observer-based controller a...This paper investigates the problem of non-fragile observer-based passive control for descriptor systems with time-delay. The perturbations in both the control gain and observer gain of the observer-based controller are considered. For the cases of the additive perturbations and multiplicative perturbations, sufficient conditions are given such that the closed-loop systems are admissible and passive with dissipation η. The observer-based controller gains could be obtained from the solutions of linear matrix inequalities (LMIs). Moreover, the maximum dissipation of the system is provided. Simulation examples are given to show the effectiveness of the deign methods.展开更多
Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multipl...Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.展开更多
The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral in...The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.展开更多
This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivale...This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.展开更多
Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The par...Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.展开更多
Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robu...Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.展开更多
This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be ...This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based sufficient condition for the existence of such controllers is established. Finally, a numerical example is provided to illustrate the applicability of the proposed method.展开更多
This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under contro...This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain variations. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Finally, a numerical example is illustrated to show the contribution of the main result.展开更多
This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback control...This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback controller which can tolerate uncertainties from both models and gain variation. Sufficient conditions for the existence of such controller are given based on the linear matrix inequality (LMI) approach combined with Lyapunov method and inequality technique. A numerical example is given to illustrate the feasibility and effectiveness of our result.展开更多
This paper considers the problem of delay-dependent non-fragile H∞control for a class of linear systems with interval time-varying delay. Based on the direct Lyapunov method, an appropriate Lyapunov-Krasovskii functi...This paper considers the problem of delay-dependent non-fragile H∞control for a class of linear systems with interval time-varying delay. Based on the direct Lyapunov method, an appropriate Lyapunov-Krasovskii functional(LKF) with triple-integral terms and augment terms is introduced. Then, by using the integral inequalities and convex combination technique, an improved H∞performance analysis criterion and non-fragile H∞controller are formulated in terms of linear matrix inequalities(LMIs), which can be easily solved by using standard numerical packages. At last, two numerical examples are provided to demonstrate the effectiveness of the obtained results.展开更多
The main aim of this work is to design a non-fragile sampled data control(NFSDC) scheme for the asymptotic synchronization criteria for interconnected coupled circuit systems(multi-agent systems, MASs). NFSDC is used ...The main aim of this work is to design a non-fragile sampled data control(NFSDC) scheme for the asymptotic synchronization criteria for interconnected coupled circuit systems(multi-agent systems, MASs). NFSDC is used to conduct synchronization analysis of the considered MASs in the presence of time-varying delays. By constructing suitable Lyapunov functions, sufficient conditions are derived in terms of linear matrix inequalities(LMIs) to ensure synchronization between the MAS leader and follower systems. Finally, two numerical examples are given to show the effectiveness of the proposed control scheme and less conservation of the proposed Lyapunov functions.展开更多
基金supported by the National Natural Science Foundation of China (No.60574011)
文摘This paper investigates the problem of non-fragile observer-based passive control for descriptor systems with time-delay. The perturbations in both the control gain and observer gain of the observer-based controller are considered. For the cases of the additive perturbations and multiplicative perturbations, sufficient conditions are given such that the closed-loop systems are admissible and passive with dissipation η. The observer-based controller gains could be obtained from the solutions of linear matrix inequalities (LMIs). Moreover, the maximum dissipation of the system is provided. Simulation examples are given to show the effectiveness of the deign methods.
基金Project supported by the Foundation for Distinguished Young Talents in Higher Education of Guangdong Province of China(Grant No. LYM10074)the Natural Science Foundation of Guangdong Province,China (Grant No. 9451042001004076)
文摘Dynamical variables of coupled nonlinear oscillators can exhibit different synchronization patterns depending on the designed coupling scheme. In this paper, a non-fragile linear feedback control strategy with multiplicative controller gain uncertainties is proposed for realizing the mixed-synchronization of Chua's circuits connected in a drive-response configuration. In particular, in the mixed-synchronization regime, different state variables of the response system can evolve into complete synchronization, anti-synchronization and even amplitude death simultaneously with the drive variables for an appropriate choice of scaling matrix. Using Lyapunov stability theory, we derive some sufficient criteria for achieving global mixed-synchronization. It is shown that the desired non-fragile state feedback controller can be constructed by solving a set of linear matrix inequalities (LMIs). Numerical simulations are also provided to demonstrate the effectiveness of the proposed control approach.
基金Project(60574014) supported by the National Natural Science Foundation of ChinaProject(20050533015) supported by the Doctor Subject Foundation of ChinaProject(60425310) supported by the National Science Foundation for Distinguished Youth Scholars, China
文摘The problem of designing a non-fragile delay-dependent H∞ state-feedback controller was investigated for a linear time-delay system with uncertainties in state and control input. First, a recently derived integral inequality method and Lyapunov-Krasovskii stability theory were used to derive new delay-dependent bounded real lemmas for a non-fragile state-feedback controller containing additive or multiplicative uncertainties. They ensure that the closed-loop system is internally stable and has a given H∞ disturbance attenuation level. Then, methods of designing a non-fragile H∞ state feedback controller were presented. No parameters need to be tuned and can be easily determined by solving linear matrix inequalities. Finally, the validity of the proposed methods was demonstrated by a numerical example with the asymptotically stable curves of system state and controller output under the initial condition of x(0)=1 0 -1]T and h=0.8 time-delay boundary.
基金supported by National Natural Science Foundation of China(No.60974139,No.60804021)Fundamental Research Funds for the Central Universities
文摘This paper is concerned with the non-fragile H∞ filter design problem for uncertain discrete-time Takagi-Sugeno (T-S) fuzzy systems with time delay. To begin with, the T-S fuzzy system is transformed to an equivalent switching fuzzy system. Then, based on the piecewise Lyapunov function and matrix decoupling technique, a new delay-dependent non-fragile H∞ filtering method is proposed for the switching fuzzy system. The proposed condition is less conservative than the previous results. Since only a set of LMIs is involved, the filter parameters can be solved directly. Finally, a design example is provided to illustrate the validity of the proposed method.
基金the National Natural Science Foundation of China (60674019).
文摘Considering the design problem of non-fragile decentralized H∞ controller with gain variations, the dynamic feedback controller by measurement feedback for uncertain linear systems is constructed and studied. The parameter uncertainties are considered to be unknown but norm bounded. The design procedures are investigated in terms of positive definite solutions to modify algebraic Riccati inequalities. Using information exchange among local controllers, the designed non-fragile decentralized H∞ controllers guarantee that the uncertain closed-loop linear systems are stable and with H∞ -norm bound on disturbance attenuation. A sufficient condition that there are such non-fragile H∞ controllers is obtained by algebraic Riccati inequalities. The approaches to solve modified algebraic Riccati inequalities are carried out preliminarily. Finally, a numerical example to show the validity of the proposed approach is given.
文摘Time-delays,due to the information transmission between subsystems,naturally exist in large-scale systems and the existence of the delay is frequently a source of instability. This paper considers the problems of robust non-fragile fuzzy control for a class of uncertain discrete nonlinear large-scale systems with time-delay and controller gain perturbations described by T-S fuzzy model. An equivalent T-S fuzzy model is represented for discrete-delay nonlinear large-scale systems. A sufficient condition for the existence of such non-fragile controllers is further derived via the Lyapunov function and the linear matrix inequality( LMI) approach. Simulation results demonstrate the feasibility and the effectiveness of the proposed design and the proper stabilization of the system in spite of controller gain variations and uncertainties.
文摘This paper is concerned with the design problem of non-fragile controller for a class of two-dimensional (2-D) discrete uncertain systems described by the Roesser model. The parametric uncertainties are assumed to be norm-bounded. The aim of this paper is to design a memoryless non-fragile state feedback control law such that the closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A new linear matrix inequality (LMI) based sufficient condition for the existence of such controllers is established. Finally, a numerical example is provided to illustrate the applicability of the proposed method.
文摘This paper considers the problem of robust non-fragile control for a class of two-dimensional (2-D) discrete uncertain systems described by the Fornasini-Marchesini second local state-space (FMSLSS) model under controller gain variations. The parameter uncertainty is assumed to be norm-bounded. The problem to be addressed is the design of non-fragile robust controllers via state feedback such that the resulting closed-loop system is asymptotically stable for all admissible parameter uncertainties and controller gain variations. A sufficient condition for the existence of such controllers is derived based on the linear matrix inequality (LMI) approach combined with the Lyapunov method. Finally, a numerical example is illustrated to show the contribution of the main result.
文摘This paper concerns the robust non-fragile guaranteed cost control for nonlinear time delay discrete-time systems based on Takagi-Sugeno (T-S) model. The problem is to design a guaranteed cost state feedback controller which can tolerate uncertainties from both models and gain variation. Sufficient conditions for the existence of such controller are given based on the linear matrix inequality (LMI) approach combined with Lyapunov method and inequality technique. A numerical example is given to illustrate the feasibility and effectiveness of our result.
基金supported by National Natural Science Foundation of China(Nos.61074072 and 61374120)
文摘This paper considers the problem of delay-dependent non-fragile H∞control for a class of linear systems with interval time-varying delay. Based on the direct Lyapunov method, an appropriate Lyapunov-Krasovskii functional(LKF) with triple-integral terms and augment terms is introduced. Then, by using the integral inequalities and convex combination technique, an improved H∞performance analysis criterion and non-fragile H∞controller are formulated in terms of linear matrix inequalities(LMIs), which can be easily solved by using standard numerical packages. At last, two numerical examples are provided to demonstrate the effectiveness of the obtained results.
基金Project supported by the National Natural Science Foundation of China(No.62103103)the Natural Science Foundation of Jiangsu Province,China(No.BK20210223)。
文摘The main aim of this work is to design a non-fragile sampled data control(NFSDC) scheme for the asymptotic synchronization criteria for interconnected coupled circuit systems(multi-agent systems, MASs). NFSDC is used to conduct synchronization analysis of the considered MASs in the presence of time-varying delays. By constructing suitable Lyapunov functions, sufficient conditions are derived in terms of linear matrix inequalities(LMIs) to ensure synchronization between the MAS leader and follower systems. Finally, two numerical examples are given to show the effectiveness of the proposed control scheme and less conservation of the proposed Lyapunov functions.