A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained d...A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern(BP), transition pattern(TP), and wave pattern(WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.展开更多
To maintain healthy and sanitary indoor air quality, development of effective decontamination measures for the indoor environment is important and hydrogen peroxide is often used as decontamination agent in healthcare...To maintain healthy and sanitary indoor air quality, development of effective decontamination measures for the indoor environment is important and hydrogen peroxide is often used as decontamination agent in healthcare environment. In this study, we focused on the decomposition phenomena of vaporized hydrogen peroxide on wall surfaces in indoor environment and discussed a wall surface decomposition model for vaporized hydrogen peroxide using computational fluid dynamics to simulate the concentration distributions of vaporized hydrogen peroxide. A major drawback to using numerical simulations is the lack of sufficient data on boundary conditions for various types of building materials and hence. We also conducted the fundamental chamber experiment to identify the model parameters of wall surface decomposition model for targeting five types of building materials.展开更多
Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometr...Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.展开更多
In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conduct...In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches.展开更多
Contaminated or infected patients present a risk of cross-contamination for emergency responders, attending medical personnel and medical facilities as they enter a treatment facility. The controlled conditions of an ...Contaminated or infected patients present a risk of cross-contamination for emergency responders, attending medical personnel and medical facilities as they enter a treatment facility. The controlled conditions of an aerosol test chamber are required to examine factors of contamination, decontamination, and cross-contamination. This study presents the design, construction, and a method for characterizing an aerosol test chamber for a full-sized manikin on a standard North Atlantic Treaty Organization litter. The methodology combined air velocity measurements, aerosol particle counts and size distributions, and computational fluid dynamics modeling to describe the chamber’s performance in three dimensions. This detailed characterization facilitates future experimental design by predicting chamber performance for a variety of patient-focused research.展开更多
传统混凝土养护箱存在着设定条件不足、设备较大、正常使用移动不便等问题,本文基于TRIZ理论(Theory of the solution of inventive problems)中的功能分析、裁剪分析、因果轴分析、物-场分析和技术矛盾分析方法,对混凝土养护箱进行优...传统混凝土养护箱存在着设定条件不足、设备较大、正常使用移动不便等问题,本文基于TRIZ理论(Theory of the solution of inventive problems)中的功能分析、裁剪分析、因果轴分析、物-场分析和技术矛盾分析方法,对混凝土养护箱进行优化设计,并提出了一种可移动拆卸和远程操作设定的混凝土养护箱设计思路。展开更多
基金financially supported by the National Natural Science Foundation of China (No.51704203)the PhD Early Development Program of Taiyuan University of Science and Technology (Nos. 20152008, 20152013, and 20152018)+2 种基金Shanxi Province Science Foundation for Youths (No. 201601D202027)Key Project of Research and Development Plan of Shanxi Province (Nos. 201603D111004 and 201603D121010)NSFC-Shanxi Coal Based Low Carbon Joint Fund (No. U1510131)
文摘A water model and a high-speed video camera were utilized in the 300-t RH equipment to study the effect of steel flow patterns in a vacuum chamber on fast decarburization and a superior flow-pattern map was obtained during the practical RH process. There are three flow patterns with different bubbling characteristics and steel surface states in the vacuum chamber: boiling pattern(BP), transition pattern(TP), and wave pattern(WP). The effect of the liquid-steel level and the residence time of the steel in the chamber on flow patterns and decarburization reaction were investigated, respectively. The liquid-steel level significantly affected the flow-pattern transition from BP to WP, and the residence time and reaction area were crucial to evaluate the whole decarburization process rather than the circulation flow rate and mixing time. A superior flow-pattern map during the practical RH process showed that the steel flow pattern changed from BP to TP quickly, and then remained as TP until the end of decarburization.
文摘To maintain healthy and sanitary indoor air quality, development of effective decontamination measures for the indoor environment is important and hydrogen peroxide is often used as decontamination agent in healthcare environment. In this study, we focused on the decomposition phenomena of vaporized hydrogen peroxide on wall surfaces in indoor environment and discussed a wall surface decomposition model for vaporized hydrogen peroxide using computational fluid dynamics to simulate the concentration distributions of vaporized hydrogen peroxide. A major drawback to using numerical simulations is the lack of sufficient data on boundary conditions for various types of building materials and hence. We also conducted the fundamental chamber experiment to identify the model parameters of wall surface decomposition model for targeting five types of building materials.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province(No.2015JQ6221,No. 2015JQ6259,No.2015JM6341)the Fundamental Research Funds for the Central Universities(No.JB140109)+8 种基金the National Natural Science Foundation of China(No. 61401321,No.61372067)the National Hightech R&D Program of China(No. 2014AA01A704,No.2015AA7124058)the National Basic Research Program of China(No.2014CB340206)the National Key Technology R&D Program of China(No. 2012BAH16B00)the Next Generation Internet Program of China(No.CNGI1203003)the Research Culture Funds of Xi'an University of Science and Technology(No.201357)the Open Project of State Key Laboratory of Integrated Service Networks(No.ISN1601)the Open Research Fund of National Mobile Communications Research Laboratory (No.2015D01)the Science and Technology R&D Program of Shaanxi Province(No. 2014KJXX-49)
文摘Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.
基金Supported by the National Science Foundation of China(E041003)the Fundamental Research Funds for the Central Universities(FRF-TP-15-105 A1)the Postdoctoral Science Foundation of China(2015M580049)
文摘In order to investigate detonation propagation and distribution problems of premixed CH_4 + 2O_2 mixture around a concrete structure such as a refuge chamber,detonation experiments in one small size tube were conducted. A simulation method was developed to obtain the flow field load distribution in the coal mine lane and pressure load of each part for the refuge chamber. Firstly,a physical model of a full-size explosiontest lane was established,which included the refuge chamber. With the calculations of the exact initial detonation pressure,the propagation characteristics of CH_4 + 2O_2 premixed mixture detonation in the lane was simulated. Simulation results of various parts from AUTODYN are recorded,and the shock wave arrival time and the pressure peak can be observed from the detonation pressure-time curve over the changing propagation distance. So curve differences in different locations cannot be ignored. Then by detonation experiments in the small size tube,detonation pressure-time curves and velocity were obtained. Finally the simulation waveform of variation curve agreed well with the experimental results,which validated the detonation simulation method. The difference between shockwaves of the two sensors confirmed that detonation wave changed along with distance and time. These results should be taken into serious consideration for the detonation progration and distribution problem in future researches.
文摘Contaminated or infected patients present a risk of cross-contamination for emergency responders, attending medical personnel and medical facilities as they enter a treatment facility. The controlled conditions of an aerosol test chamber are required to examine factors of contamination, decontamination, and cross-contamination. This study presents the design, construction, and a method for characterizing an aerosol test chamber for a full-sized manikin on a standard North Atlantic Treaty Organization litter. The methodology combined air velocity measurements, aerosol particle counts and size distributions, and computational fluid dynamics modeling to describe the chamber’s performance in three dimensions. This detailed characterization facilitates future experimental design by predicting chamber performance for a variety of patient-focused research.
文摘传统混凝土养护箱存在着设定条件不足、设备较大、正常使用移动不便等问题,本文基于TRIZ理论(Theory of the solution of inventive problems)中的功能分析、裁剪分析、因果轴分析、物-场分析和技术矛盾分析方法,对混凝土养护箱进行优化设计,并提出了一种可移动拆卸和远程操作设定的混凝土养护箱设计思路。