期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
A Real-time Cutting Model Based on Finite Element and Order Reduction 被引量:3
1
作者 Xiaorui Zhang Wenzheng Zhang +3 位作者 Wei Sun Hailun Wu Aiguo Song Sunil Kumar Jha 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期1-15,共15页
Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a rea... Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural. 展开更多
关键词 Virtual surgery cutting model finite element model model order reduction Bezier curve
下载PDF
Hydraulic modeling and optimization of jet mill bit considering the characteristics of depressurization and cuttings cleaning
2
作者 Tong Cao Xu-Yue Chen +1 位作者 Kai-An Yu Lin Tang 《Petroleum Science》 SCIE EI CSCD 2023年第5期3085-3099,共15页
A jet mill bit(JMB)is proposed to increase the drilling efficiency and safety of horizontal wells,which has the hydraulic characteristics of depressurization and cuttings cleaning.This paper fills the gap in the hydra... A jet mill bit(JMB)is proposed to increase the drilling efficiency and safety of horizontal wells,which has the hydraulic characteristics of depressurization and cuttings cleaning.This paper fills the gap in the hydraulic study of the JMB by focusing on the hydraulic modeling and optimization of the JMB and considering these two hydraulic characteristics.First,the hydraulic depressurization model and the hydraulic cuttings cleaning model of the JMB are developed respectively.In the models,the pressure ratio and efficiency are chosen as the evaluation parameters of the depressurization capacity of the JMB,and the jet hydraulic power and jet impact force are chosen as the evaluation parameters of cuttings cleaning capacity of the JMB.Second,based on the hydraulic models,the effects of model parameters[friction loss coefficient,target inclination angle,rate of penetration(ROP),flow ratio,and well depth]on the hydraulic performance of the JMB are investigated.The results show that an increase in the friction loss coefficient and target inclination angle cause a significant reduction in the hydraulic depressurization capacity,and the effect of ROP is negligible.The flow ratio is positively related to the hydraulic cuttings cleaning capacity,and the well depth determines the maximum hydraulic cuttings cleaning capacity.Finally,by combining the hydraulic depressurization model and hydraulic cuttings cleaning model,an optimization method of JMB hydraulics is proposed to simultaneously maximize the jet depressurization capacity and the cuttings cleaning capacity.According to the drilling parameters given,the optimal values of the drilling fluid flow rate,backward nozzle diameter,forward nozzle diameter,and throat diameter can be determined.Moreover,a case study is conducted to verify the effectiveness of the optimization method. 展开更多
关键词 Jet mill bit Hydraulic depressurization model Hydraulic cuttings cleaning model Parametric study Hydraulic optimization
下载PDF
New Virtual Cutting Algorithms for 3D Surface Model Reconstructed from Medical Images
3
作者 WANG Wei-hong QIN Xu-Jia 《Chinese Journal of Biomedical Engineering(English Edition)》 2006年第2期53-61,共9页
This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model ... This paper proposes a practical algorithms of plane cutting, stereo clipping and arbitrary cutting for 3D surface model reconstructed from medical images. In plane cutting and stereo clipping algorithms, the 3D model is cut by plane or polyhedron. Lists of edge and vertex in every cut plane are established. From these lists the boundary contours are created and their relationship of embrace is ascertained. The region closed by the contours is triangulated using Delaunay triangulation algorithm. Arbitrary cutting operation creates cutting curve interactively. The cut model still maintains its correct topology structure. With these operations, tissues inside can be observed easily and it can aid doctors to diagnose. The methods can also be used in surgery planning of radiotherapy. 展开更多
关键词 MEDICAL Image 3D reconstruction Surface model cutting
下载PDF
Modeling the effects of mechanical parameters on the hydrodynamic behavior of vertical current classifiers 被引量:3
4
作者 Arabzadeh Jarkani Soroush Khoshdast Hamid +1 位作者 Shariat Elaheh Sam Abbas 《International Journal of Mining Science and Technology》 SCIE EI 2014年第1期123-127,共5页
This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, an... This study modeled the effects of structural and dimensional manipulations on hydrodynamic behavior of a bench vertical current classifier. Computational fluid dynamics (CFD) approach was used as modeling method, and turbulent intensity and fluid velocity were applied as system responses to predict the over- flow cut size variations. These investigations showed that cut size would decrease by increasing diameter and height of the separation column and cone section depth, due to the decrease of turbulent intensity and fluid velocity. As the size of discharge gate increases, the overflow cut-size would decrease due to freely fluid stream out of the column. The overflow cut-size was significantly increased in downward fed classifier compared to that fed by upward fluid stream. In addition, reforming the shape of angular overflow outlet's weir into the curved form prevented stream inside returning and consequently unselec- tire cut-size decreasing. 展开更多
关键词 Hydraulic classifier modeling Computational fluid dynamic Cut size
下载PDF
Cutting Behavior of Cortical Bone in Different Bone Osteon Cutting Angles and Depths of Cut
5
作者 Yuanqiang Luo Yinghui Ren +3 位作者 Yang Shu Cong Mao Zhixiong Zhou Z.M.Bi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第3期80-91,共12页
Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to re... Cortical bone is semi-brittle and anisotropic,that brings a challenge to suppress vibration and avoid undesired fracture in precise cutting process in surgeries.In this paper,a novel analytical model is proposed to represent cortical bone cutting processes.The model is utilized to predict the chip formations,material removal behavior and cracks propagation under varying bone osteon cutting angles and depths.Series of orthogonal cutting experiments were conducted on cortical bone to investigate the impact of bone osteon cutting angle and depth of cut on cutting force,crack initialization and propagation.The observed chip morphology highly agreed with the prediction of chip formation based on the analytical model.The curly,serrated,grainy and powdery chips formed when the cutting angle was set as 0°,60°,90°,and 120°,respectively.Cortical bone were removed dominantly by shearing at a small depth of cut from 10 to 50μm,and by a mixture of pealing,shearing,fracture and crushing at a large depth of cut over 100μm at different bone osteon angles.Moreover,its fracture toughness was calculated based on measured cutting force.It is found that the fluctuation of cutting force is suppressed and the bone material becomes easy to remove,which attributes to lower fracture toughness at bone osteon cutting angle 0°.When the cutting direction develops a certain angle to bone osteon,the fracture toughness increases then the crack propagation is inhibited to some extent and the fluctuation of cutting force comparatively decreases.There is a theoretical and practical significance for tools design and operational parameters choice in surgeries. 展开更多
关键词 Bone cutting surgery Orthogonal cutting models Anisotropic materials Chip formation Crack initialization and propagation Fracture toughness
下载PDF
Machining process model based on virtual reality environment
6
作者 王太勇 汪文津 +2 位作者 汪文颖 范胜波 罗珺 《Journal of Central South University》 SCIE EI CAS 2005年第S2期34-40,共7页
Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement ... Virtual manufacturing is fast becoming an affordable technology with wide-ranging applications in modern manufacturing. Its advantages over existing technology are primarily that users can visualize, feel involvement and interact with virtual representations of real world activities in real time. In this paper, a virtual cutting system is built which can simulate turning process, estimate tool wear and cutting force using artificial neural network etc. Using the simulated machining environment in virtual reality (VR), the user can practise and preview the operations for possible problems that might occur during implementation. This approach enables designers to evaluate and design feasible machining processes in a consistent manner as early as possible during the development process. 展开更多
关键词 virtual manufacturing environment NC graphics verification artificial neural network tool wear estimation model cutting force prediction model
下载PDF
Cutting force model and damage formation mechanism in milling of 70wt%Si/Al composite 被引量:3
7
作者 Guolong ZHAO Lianjia XIN +3 位作者 Liang LI Yang ZHANG Ning HE Hans Nørgaard HANSEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第7期114-128,共15页
High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many appl... High-mass fraction silicon aluminium composite(Si/Al composite) has unique properties of high specific strength, low thermal expansion coefficient, excellent wear resistance and weldability. It has attracted many applications in terms of radar communication, aerospace and automobile industry. However, rapid tool wear resulted from high cutting force and hard abrasion, and damaged machined surfaces are the main problem in machining Si/Al composite. This work aims to reveal the mechanisms of milling-induced damages of 70wt% Si/Al composites. A cutting force analytical model considering the characteristics of both the primary silicon particles and the cutting-edge radius was established. Milling experiments were conducted to verify the validity of the model. The results show that the analytical model exhibits a good consistency with the experimental results, and the error is about 10%. The cutting-edge radius has significant effects on the cutting force, surface roughness and damage formation. With the increase in the cutting-edge radius, both the cutting force and the surface roughness decrease firstly and then increase. When the cutting-edge radius is 27 μm, the surface roughness(Sa) reaches the minimum of 2.3 μm.Milling-induced surface damages mainly contain cracks, pits, scratches, matrix coating and burrs.The damage formation is dominated by the failure mode of primary silicon particles, which includes compressive breakage, intragranular fracture, particle pull-out, and interface debonding. In addition, the high ductility of aluminium matrix leads to matrix coating. This work provides guidance for tool selection and damage inhibition in high-efficiency and high-precision machining of high mass fraction Si/Al composites. 展开更多
关键词 posite cutting force analytical model cutting-edge radius Surface quality Damage formation mechanism
原文传递
Wall Sticking of High Water-Cut, Highly Viscous and High Gel-Point Crude Oil Transported at Low Temperatures 被引量:21
8
作者 Zheng Haimin Huang Qiyu +1 位作者 Wang Changhui Wang Xi 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2015年第4期20-29,共10页
Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a ... Some crude oils with high water cut have the capability to flow below the oil gel point, while the oil particles adhere to the pipe wall in the form of paste, also called "wall sticking". Wall sticking is a serious problem during the pipeline transportation, leading to partial or total blockage of the pipeline and energy wastage. In this paper, a series of laboratory flow loop experiments were conducted to observe the wall sticking characteristics of crude oil with high water cut, high viscosity and high gel point at low transportation temperatures. The effects of shear stress and water cut on the wall sticking rate and occurrence temperature were investigated. Experimental results indicated that the wall sticking rate and occurrence temperature were lower under stronger shear stress and higher water cut conditions. A criterion of wall sticking occurrence temperature(WSOT) and a regression model of wall sticking rate were then established. Finally, the software was developed to calculate the pressure drop along the pipelines of crude oils with high water-cut. It was able to predict the wall sticking thickness of gelled oil and then calculate the pressure drop along the pipelines. A typical case study indicated that the prediction results obtained from the software were in agreement with actual measured values. 展开更多
关键词 wall sticking high viscosity high water cut flow loop regression model
下载PDF
Impact of crude distillation unit model accuracy on refinery production planning 被引量:3
9
作者 Gang FU Pedro A.Castillo CASTILLO Vladimir MAHALEC 《Frontiers of Engineering Management》 2018年第2期195-201,共7页
In this work, we examine the impact of crude distillation unit(CDU) model errors on the results of refinery-wide optimization for production planning or feedstock selection. We compare the swing cut + bias CDU model w... In this work, we examine the impact of crude distillation unit(CDU) model errors on the results of refinery-wide optimization for production planning or feedstock selection. We compare the swing cut + bias CDU model with a recently developed hybrid CDU model(Fu et al., 2016). The hybrid CDU model computes material and energy balances, as well as product true boiling point(TBP) curves and bulk properties(e.g., sulfur% and cetane index, and other properties). Product TBP curves are predicted with an average error of 0.5% against rigorous simulation curves. Case studies of optimal operation computed using a planning model that is based on the swing cut + bias CDU model and using a planning model that incorporates the hybrid CDU model are presented. Our results show that significant economic benefits can be obtained using accurate CDU models in refinery production planning. 展开更多
关键词 impact of model accuracy on productionplanning swing cut+ bias CDU model hybrid CDUmodel refinery feedstock selection optimization optimization of refinery operation
原文传递
Finite element modeling of chip separation in machining cellular metals
10
作者 R.Guerra Silva U.Teicher +1 位作者 A.Nestler A.Brosius 《Advances in Manufacturing》 SCIE CAS CSCD 2015年第1期54-62,共9页
Cellular metals and metal foams belong to a young material group. Although it is desired to manufac- ture near-net-shape parts of cellular metals by primary shaping processes, additional secondary machining opera- tio... Cellular metals and metal foams belong to a young material group. Although it is desired to manufac- ture near-net-shape parts of cellular metals by primary shaping processes, additional secondary machining opera- tions are often unavoidable to obtain the required geome- tries and quality demands. Nevertheless, conventional machining of cellular metals leads to undesirable surface damage and poor precision. Furthermore, the chip forma- tion and the mechanism description of the surface damage are still unclear. A mesoscopic finite element model was developed to simulate the chip formation process in machining cellular metals. Experimental data of orthogonal machining tests were used to validate the finite element model. The cutting and thrust forces, as well as the images of the chip formation process of both experiments and simulations were compared and analysed. The model enabled the analysis of the chip formation and the surface defect mechanisms. The rake angle and cutting conditions affected the chip formation process, but the cell arrange- ment was detected as a decisive factor in the chip forma- tion and the resulting surface damage. 展开更多
关键词 Cellular metals. Metal foams - MachiningFinite element modeling - Orthogonal cutting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部