Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by esta...Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.展开更多
A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantag...A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.展开更多
Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient (Ca) and oceanic drag coefficient (Cw). Parameterizations of drag coefficients rather than constant values provide us a ...Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient (Ca) and oceanic drag coefficient (Cw). Parameterizations of drag coefficients rather than constant values provide us a way to look insight into the dependence of these characteristics on sea ice conditions. In the present study, the parameterized ice drag coefficients are included into a free-drift sea ice dynamic model, and the wind factor a and the deflection angle θ between sea ice drift and wind velocity as well as the ratio of Ca to Cw are studied to investigate their dependence on the impact factors such as local drag coefficients, floe and ridge geometry. The results reveal that in an idealized steady ocean, Ca/Cw increases obviously with the increasing ice concentration for small ice floes in the marginal ice zone, while it remains at a steady level (0.2-0.25) for large floes in the central ice zone. The wind factor a increases rapidly at first and approaches a steady level of 0.018 when A is greater than 20%. And the deflection angle ~ drops rapidly from an initial value of approximate 80° and decreases slowly as A is greater than 20% without a steady level like a. The values of these parameters agree well with the previously reported observations in Arctic. The ridging intensity is an important parameter to determine the dominant contribution of the ratio of skin friction drag coefficient (Cs'/Cs) and the ratio of ridge form drag coefficient (Cr'/Cr) to the value of Ca/Cw, a, and 8, because of the dominance of ridge form drag for large ridging intensity and skin friction for small ridging intensity among the total drag forces. Parameterization of sea ice drag coefficients has the potential to be embedded into ice dynamic models to better account for the variability of sea ice in the transient Arctic Ocean.展开更多
This study examines the effects of Stokes drift on pollutant transport within the surf zone on a plane beach both numerically and experimentally. Firstly, the numerical model is described. The wave-induced current is ...This study examines the effects of Stokes drift on pollutant transport within the surf zone on a plane beach both numerically and experimentally. Firstly, the numerical model is described. The wave-induced current is modeled using the concept of the radiation stress. The wave propagation model is based on the wave energy conservation equation. And the advective diffusion model including the Stokes drift is used to describe the pollutant transport in the surf zone. Model validation was achieved in this case versus an analytical solution for an instantaneous point source in a uniform horizontal flow. This study also describes a laboratory experiment on dye release in the surf zone over a plane beach. We examined the final inclination angle required by a continuously released pollutant plume to reach the shoreline under both cases, and transport velocities in the alongshore and cross- shore directions were estimated by linearly fitting the location of a dye-patch front at different time. Results show that this dye patch moved shoreward with an approximate speed of 0.05 m/s (0.017 m/s) between 10 s and 40 s and 0.001 m/s (0.011 m/s) after 40 s for Case 1 (2). This model was then used to simulate pollutant transport in the surf zone on a plane beach as reproduced in the current experiment. Comparisons between our dye transport experiment and numerical results were then also conducted;the data showed that the numerical results including Stokes drift agreed more closely with experimental results than those without it. The data showed that the pollutant was generally transported obviously shoreward in addition to its expected drift along the shore. We also suggest that Stokes drift plays an important role in pollutant movement in the surf zone, especially shoreward.展开更多
Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on ...Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on solving the governing equations of the Fr-DD model is practically nonexistent.In this paper,an iterative solver with high precision is developed to solve both the transient and steady-state Fr-DD model for organic semiconductor devices.The Fr-DD model is composed of two fractionalorder carriers(i.e.,electrons and holes)continuity equations coupled with Poisson’s equation.By treating the current density as constants within each pair of consecutive grid nodes,a linear Caputo’s fractional-order ordinary differential equation(FrODE)can be produced,and its analytic solution gives an approximation to the carrier concentration.The convergence of the solver is guaranteed by implementing a successive over-relaxation(SOR)mechanism on each loop of Gummel’s iteration.Based on our derivations,it can be shown that the Scharfetter–Gummel discretization method is essentially a special case of our scheme.In addition,the consistency and convergence of the two core algorithms are proved,with three numerical examples designed to demonstrate the accuracy and computational performance of this solver.Finally,we validate the Fr-DD model for a steady-state organic field effect transistor(OFET)by fitting the simulated transconductance and output curves to the experimental data.展开更多
Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind s...Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.展开更多
It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner mod...It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner model, its improvement is reflected in the horizontal motion which includes an explicit drift term. On the one hand, the depth-decay factor for the new drift accords well with that of the particle’s horizontal velocity. It is more rational than that of Stokes drift. On the other hand, the new formula needs no Taylor expansion as for Stokes drift and is applicable for the waves with big slopes. In addition, the new formula can also yield a more rational magnitude for the surface drift than that of Stokes.展开更多
Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least square...Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM.展开更多
In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multi...In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.展开更多
A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-unifor...A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model.展开更多
To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG), a 1D simulation code based on the four-equation drift flux model is developed. The U-tube channels presumably consist mainly o...To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG), a 1D simulation code based on the four-equation drift flux model is developed. The U-tube channels presumably consist mainly of the primary channel, secondary channel, and tube wall. In the sub-cooling regions of the primary and secondary channels, flow is simulated using the single-phase flow model, whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model. The first-order equations of upwind difference are derived based on the staggered grid. Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement. The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%, 75%, 50%, 30%, and 15% power conditions. Analysis results are then compared with the simulation results obtained using RELAP5.展开更多
Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The ...Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The grid optimization method is always used to find proper initial matrix for off-line estimation.However,the grid method has the draw back being time consuming hence,coarse grid followed by a fine grid method is adopted.To further improve efficiency without the loss of estimation accuracy,we propose a genetic algorithm for the coarse grid optimization in this paper.It is recognized that the crossover rate and mutation rate are the main influencing factors for the performance of the genetic algorithm,so sensitivity experiments for these two factors are carried out and a set of genetic algorithm parameters with good adaptability were selected by testing with several gyros’experimental data.Experimental results show that the proposed algorithm has higher efficiency and better estimation accuracy than the traversing grid algorithm.展开更多
In this work, we present a numerical model to solve the drift diffusion equations coupled with electromagnetic model, where all simulations codes are implemented using MATLAB code software. As first, we present a one-...In this work, we present a numerical model to solve the drift diffusion equations coupled with electromagnetic model, where all simulations codes are implemented using MATLAB code software. As first, we present a one-dimensional (1-D) PIN diode structure simulation achieved by solving the drift diffusion model (DDM). Backward Euler algorithm is used for the discretization of the proposed model. The aim is to accomplish time-domain integration. Also, finite different method (FDM) is considered to achieve space-Domain mesh. We introduced an iterative scheme to solve the obtained matrix systems, which combines the Gummel’s iteration with an efficient direct numerical UMFPACK method. The obtained solutions of the proposed algorithm provide the time and space distribution of the unknown functions like electrostatic potential and carrier’s concentration for the PIN diode. As second case, the finite-difference time-domain (FDTD) technique is adopted to analyze the entire 3-D structure of the stripline circuit including the lumped element PIN diode. The microwave circuit is located in an unbounded medium, requiring absorbing boundaries to avoid nonphysical reflections. Active device results were presented and show a good agreement with other reference. Electromagnetic results are qualitatively in agreement with other results obtained using SILVACO-TCAD.展开更多
The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this a...The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control, critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.展开更多
According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied...According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model.展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2017YFC0405401)the National Science&Technology Pillar Program(Grant No.2012BAB03B01)+1 种基金the Fundamental Research Funds for the Central Universities,Hohai University(Grant No.2014B30914)the Natural Science Foundation of Jiangsu Province(Grant No.BK2012411)
文摘Understanding the drifting motion of a small semi-submersible drifter is of vital importance regarding monitoring surface currents and the floating pollutants in coastal regions. This work addresses this issue by establishing a mechanistic drifting forecast model based on kinetic analysis. Taking tide–wind–wave into consideration, the forecast model is validated against in situ drifting experiment in the Radial Sand Ridges. Model results show good performance with respect to the measured drifting features, characterized by migrating back and forth twice a day with daily downwind displacements. Trajectory models are used to evaluate the influence of the individual hydrodynamic forcing. The tidal current is the fundamental dynamic condition in the Radial Sand Ridges and has the greatest impact on the drifting distance. However, it loses its leading position in the field of the daily displacement of the used drifter. The simulations reveal that different hydrodynamic forces dominate the daily displacement of the used drifter at different wind scales. The wave-induced mass transport has the greatest influence on the daily displacement at Beaufort wind scale 5–6; while wind drag contributes mostly at wind scale 2–4.
文摘A novel grey Markov chain predictive model is discussed to reduce drift influence on the output of fiber optical gyroscopes (FOGs) and to improve FOGs' measurement precision. The proposed method possesses advantages of grey model and Markov chain. It makes good use of dynamic modeling idea of the grey model to predict general trend of original data. Then according to the trend, states are divided so that it can overcome the disadvantage of high computational cost of state transition probability matrix in Markov chain. Moreover, the presented approach expands the applied scope of the grey model and makes it be fit for prediction of random data with bigger fluctuation. The numerical results of real drift data from a certain type FOG verify the effectiveness of the proposed grey Markov chain model powerfully. The Markov chain is also investigated to provide a comparison with the grey Markov chain model. It is shown that the hybrid grey Markov chain prediction model has higher modeling precision than Markov chain itself, which prove this proposed method is very applicable and effective.
基金The National Natural Science Foundation of China under contracts Nos 41276191 and 41306207the Public Science and Technology Research Funds Projects of Ocean under contract No.201205007-05the Global Change Research Program of China under contract No.2015CB953901
文摘Many interesting characteristics of sea ice drift depend on the atmospheric drag coefficient (Ca) and oceanic drag coefficient (Cw). Parameterizations of drag coefficients rather than constant values provide us a way to look insight into the dependence of these characteristics on sea ice conditions. In the present study, the parameterized ice drag coefficients are included into a free-drift sea ice dynamic model, and the wind factor a and the deflection angle θ between sea ice drift and wind velocity as well as the ratio of Ca to Cw are studied to investigate their dependence on the impact factors such as local drag coefficients, floe and ridge geometry. The results reveal that in an idealized steady ocean, Ca/Cw increases obviously with the increasing ice concentration for small ice floes in the marginal ice zone, while it remains at a steady level (0.2-0.25) for large floes in the central ice zone. The wind factor a increases rapidly at first and approaches a steady level of 0.018 when A is greater than 20%. And the deflection angle ~ drops rapidly from an initial value of approximate 80° and decreases slowly as A is greater than 20% without a steady level like a. The values of these parameters agree well with the previously reported observations in Arctic. The ridging intensity is an important parameter to determine the dominant contribution of the ratio of skin friction drag coefficient (Cs'/Cs) and the ratio of ridge form drag coefficient (Cr'/Cr) to the value of Ca/Cw, a, and 8, because of the dominance of ridge form drag for large ridging intensity and skin friction for small ridging intensity among the total drag forces. Parameterization of sea ice drag coefficients has the potential to be embedded into ice dynamic models to better account for the variability of sea ice in the transient Arctic Ocean.
基金The Open Foundation of the State Key Laboratory of Hydraulic Engineering Simulation and Safety under contract No.HESS-1406the National Science Foundation for Post-doctoral Scientists of China under contract No.2013M541179the Foundation of Taiyuan University of Technology under contract No.2017MS07
文摘This study examines the effects of Stokes drift on pollutant transport within the surf zone on a plane beach both numerically and experimentally. Firstly, the numerical model is described. The wave-induced current is modeled using the concept of the radiation stress. The wave propagation model is based on the wave energy conservation equation. And the advective diffusion model including the Stokes drift is used to describe the pollutant transport in the surf zone. Model validation was achieved in this case versus an analytical solution for an instantaneous point source in a uniform horizontal flow. This study also describes a laboratory experiment on dye release in the surf zone over a plane beach. We examined the final inclination angle required by a continuously released pollutant plume to reach the shoreline under both cases, and transport velocities in the alongshore and cross- shore directions were estimated by linearly fitting the location of a dye-patch front at different time. Results show that this dye patch moved shoreward with an approximate speed of 0.05 m/s (0.017 m/s) between 10 s and 40 s and 0.001 m/s (0.011 m/s) after 40 s for Case 1 (2). This model was then used to simulate pollutant transport in the surf zone on a plane beach as reproduced in the current experiment. Comparisons between our dye transport experiment and numerical results were then also conducted;the data showed that the numerical results including Stokes drift agreed more closely with experimental results than those without it. The data showed that the pollutant was generally transported obviously shoreward in addition to its expected drift along the shore. We also suggest that Stokes drift plays an important role in pollutant movement in the surf zone, especially shoreward.
基金This work was supported in part by the National Science Foundation through Grant CNS-1726865by the USDA under Grant 2019-67021-28990.
文摘Because charge carriers of many organic semiconductors(OSCs)exhibit fractional drift diffusion(Fr-DD)transport properties,the need to develop a Fr-DD model solver becomes more apparent.However,the current research on solving the governing equations of the Fr-DD model is practically nonexistent.In this paper,an iterative solver with high precision is developed to solve both the transient and steady-state Fr-DD model for organic semiconductor devices.The Fr-DD model is composed of two fractionalorder carriers(i.e.,electrons and holes)continuity equations coupled with Poisson’s equation.By treating the current density as constants within each pair of consecutive grid nodes,a linear Caputo’s fractional-order ordinary differential equation(FrODE)can be produced,and its analytic solution gives an approximation to the carrier concentration.The convergence of the solver is guaranteed by implementing a successive over-relaxation(SOR)mechanism on each loop of Gummel’s iteration.Based on our derivations,it can be shown that the Scharfetter–Gummel discretization method is essentially a special case of our scheme.In addition,the consistency and convergence of the two core algorithms are proved,with three numerical examples designed to demonstrate the accuracy and computational performance of this solver.Finally,we validate the Fr-DD model for a steady-state organic field effect transistor(OFET)by fitting the simulated transconductance and output curves to the experimental data.
基金The National Natural Science Foundation of China under contract No.41571510the Fundamental Research Funds for the Central Universities of China under contract No.2014KJJCB02
文摘Sea ice drift is mainly controlled by ocean currents, local wind, and internal ice stress. Information on sea ice motion, especially in situ synchronous observation of an ice velocity, a current velocity, and a wind speed, is of great significance to identify ice drift characteristics. A sea ice substitute, the so-called "modelled ice", which is made by polypropylene material with a density similar to Bohai Sea ice, is used to complete a free drift experiment in the open sea. The trajectories of isolated modelled ice, currents and wind in the Bohai Sea during non-frozen and frozen periods are obtained. The results show that the currents play a major role while the wind plays a minor role in the free drift of isolated modelled ice when the wind is mild in the Bohai Sea. The modelled ice drift is significantly affected by the ocean current and wind based on the ice–current–wind relationship established by a multiple linear regression. The modelled ice velocity calculated by the multiple linear regression is close to that of the in situ observation, the magnitude of the error between the calculated and observed ice velocities is less than12.05%, and the velocity direction error is less than 6.21°. Thus, the ice velocity can be estimated based on the observed current velocity and wind speed when the in situ observed ice velocity is missing. And the modelled ice of same thickness with a smaller density is more sensitive to the current velocity and the wind speed changes. In addition, the modelled ice drift characteristics are shown to be close to those of the real sea ice, which indicates that the modelled ice can be used as a good substitute of real ice for in situ observation of the free ice drift in the open sea, which helps solve time availability, safety and logistics problems related to in situ observation on real ice.
文摘It follows from the review on classical wave models that the asymmetry of crest and trough is the direct cause for wave drift. Based on this, a new model of Lagrangian form is constructed. Relative to the Gerstner model, its improvement is reflected in the horizontal motion which includes an explicit drift term. On the one hand, the depth-decay factor for the new drift accords well with that of the particle’s horizontal velocity. It is more rational than that of Stokes drift. On the other hand, the new formula needs no Taylor expansion as for Stokes drift and is applicable for the waves with big slopes. In addition, the new formula can also yield a more rational magnitude for the surface drift than that of Stokes.
文摘Large temperature drift is an important factor for improving the performance of FOG.A trend term of temperature drift of FOG is obtained using stationary wavelets transform,and an FOG drift algorithm with least squares wavelet support vector machine(LS-WSVM) is developed.The algorithm used Maxihat wavelet as a kernel function of LS-WSVM to establish an FOG drift model.It has better modeling precise than LS-WSVM model with Gauss kernel.Results indicate the efficiency of this algorithm of LS-WSVM.
基金Project supported by the Ministry of Minority Affairs through UGC,Government of India(No.F1-17.1/2010/MANF-CHR-ORI-1839)the Industrial Consultancy,IIT Kharagpur(No.IIT/SRIC/ISIRD/2013-14)
文摘In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed.
基金Project supported by the National Natural Science Foundation of China (Grant No. 51075311)
文摘A two-phase wedge-sliding model is developed based on the micro-cellular structure and minimum entropy theory of a stable system, and it is used to describe the ingredient distribution of a mixed fluid in a non-uniform stress field and to analyse its phase drift phenomenon. In the model, the drift-inhibition angle and the expansion-inhibition angle are also deduced and used as evaluating indexes to describe the drifting trend of different ingredients among the mixed fluids. For solving above two indexes of the model, a new calculation method is developed and used to compute the phase distributions of multiphase fluid at peak stress and gradient area stress, respectively. As an example, the flow process of grease in a pipe is analysed by simulation method and used to verify the validity of the model.
基金Supported by the National Natural Science Foundation of China(Nos.51376065 and 51176052)
文摘To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG), a 1D simulation code based on the four-equation drift flux model is developed. The U-tube channels presumably consist mainly of the primary channel, secondary channel, and tube wall. In the sub-cooling regions of the primary and secondary channels, flow is simulated using the single-phase flow model, whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model. The first-order equations of upwind difference are derived based on the staggered grid. Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement. The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%, 75%, 50%, 30%, and 15% power conditions. Analysis results are then compared with the simulation results obtained using RELAP5.
文摘Extended Kalman Filter(EKF)algorithm is widely used in parameter estimation for nonlinear systems.The estimation precision is sensitively dependent on EKF’s initial state covariance matrix and state noise matrix.The grid optimization method is always used to find proper initial matrix for off-line estimation.However,the grid method has the draw back being time consuming hence,coarse grid followed by a fine grid method is adopted.To further improve efficiency without the loss of estimation accuracy,we propose a genetic algorithm for the coarse grid optimization in this paper.It is recognized that the crossover rate and mutation rate are the main influencing factors for the performance of the genetic algorithm,so sensitivity experiments for these two factors are carried out and a set of genetic algorithm parameters with good adaptability were selected by testing with several gyros’experimental data.Experimental results show that the proposed algorithm has higher efficiency and better estimation accuracy than the traversing grid algorithm.
文摘In this work, we present a numerical model to solve the drift diffusion equations coupled with electromagnetic model, where all simulations codes are implemented using MATLAB code software. As first, we present a one-dimensional (1-D) PIN diode structure simulation achieved by solving the drift diffusion model (DDM). Backward Euler algorithm is used for the discretization of the proposed model. The aim is to accomplish time-domain integration. Also, finite different method (FDM) is considered to achieve space-Domain mesh. We introduced an iterative scheme to solve the obtained matrix systems, which combines the Gummel’s iteration with an efficient direct numerical UMFPACK method. The obtained solutions of the proposed algorithm provide the time and space distribution of the unknown functions like electrostatic potential and carrier’s concentration for the PIN diode. As second case, the finite-difference time-domain (FDTD) technique is adopted to analyze the entire 3-D structure of the stripline circuit including the lumped element PIN diode. The microwave circuit is located in an unbounded medium, requiring absorbing boundaries to avoid nonphysical reflections. Active device results were presented and show a good agreement with other reference. Electromagnetic results are qualitatively in agreement with other results obtained using SILVACO-TCAD.
文摘The historical formation and development of the abandoned channel of the Yellow River is reviewed and its causes of formation and present condition of prevention and control are analyzed in this paper. Based on this analysis, some ideas about control, critical problems and countermeasures in the next period are proposed with two typical control models as examples. We suggest that in preventing and controlling the wind-drift sandy lands in the region, the emphasis should be to develop, with a greatly expanded effort, a recycling economy. This should realize a combination of two ideas, i.e. integrate combating desertification with a structural adjustment of agricultural and an increase in the income of farmers.
文摘According to the drive of planetary-scale upper magma fluid motions associated with the core-magma angular momentum exchange in the early Earth’s interior, this paper reviewed the results of continental drift studied over the last three decades. The theoretical speculation is in good fit to the traces of geological events left on the Earth’s surface. A northeastward drift directionality of the Australian, African, and South American continents relative to the Antarctica Continent in the Southern Hemisphere is reanalyzed according to the slowing down of the early Earth’s rotation. Six traces of significant back-and-forth drifts of the Australian and Asian continents left respectively on the Southwest and Northwest Pacific seafloors are reidentified according to the gradually decreasing amplitude of core-magma angular momentum exchange during early geological evolution. Finally, the thickening and shortening of different continents during the early drift processes are re-simulated by using a simple magma fluid dynamical model.