An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be ...An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.展开更多
In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property ...In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property of the internal states for the control is given and the utility of this control design is guaranteed. Finally, an example is given to illustrate the effectiveness of the proposed method.展开更多
This paper presents a genetic algorithm for the optimal design of model output following control in which there are nonlinear disturbance and uncertian parameters, where the output is regulated to follow the output of...This paper presents a genetic algorithm for the optimal design of model output following control in which there are nonlinear disturbance and uncertian parameters, where the output is regulated to follow the output of reference model. The effectiveness of the proposed algorithm is illustrated by some numerical examples.展开更多
In this paper, an integral-type robust mode following control for Plants with uncertainparameters and nonlinear factors is introduced. An genetic algorithm is also designed for obtaining thecontrol gains. Finally, som...In this paper, an integral-type robust mode following control for Plants with uncertainparameters and nonlinear factors is introduced. An genetic algorithm is also designed for obtaining thecontrol gains. Finally, some numerical examples are provided to illustrate the validity and efficiency ofthe proposed method.展开更多
文摘An optimal control procedure is developed for the front and rear wheels of a three-axle vehicle moving on a complex typical road based on model following variable structure control strategy. The actual vehicle may be considered as an uncertain system. Cornering stiffness of front and rear wheels and external disturbances are varied in a limited range. The model-following variable structure control method is used to control both front and rear wheels steering operations of the vehicle, so that steering responses of the vehicle follow from those of the reference model. By numerical results obtained from computer simulation, it is demonstrated that the control system model can cope with the effects of parameter perturbations and outside disturbances.
文摘In this paper, we propose a new state predictive model following control system (MFCS). The considered system has linear time delays. With the MFCS method, we obtain a simple input control law. The bounded property of the internal states for the control is given and the utility of this control design is guaranteed. Finally, an example is given to illustrate the effectiveness of the proposed method.
文摘This paper presents a genetic algorithm for the optimal design of model output following control in which there are nonlinear disturbance and uncertian parameters, where the output is regulated to follow the output of reference model. The effectiveness of the proposed algorithm is illustrated by some numerical examples.
文摘In this paper, an integral-type robust mode following control for Plants with uncertainparameters and nonlinear factors is introduced. An genetic algorithm is also designed for obtaining thecontrol gains. Finally, some numerical examples are provided to illustrate the validity and efficiency ofthe proposed method.