The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of ...The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of the Universe, driven by magnetic monopoles is proposed in this paper.展开更多
The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Rei...The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.展开更多
The Standard Model of particle physics does not account for charged fermion mass values and neutrino mass, or explain why only three particles are in each charge state 0, -e/3, 2e/3, and -e. These issues are addressed...The Standard Model of particle physics does not account for charged fermion mass values and neutrino mass, or explain why only three particles are in each charge state 0, -e/3, 2e/3, and -e. These issues are addressed by treating Standard Model particles with mass m as spheres with diameter equal to their Compton wavelength l =ħ/mc, where ħis Planck’s constant and c the speed of light, and any charge in diametrically opposed pairs ±ne/6 with n = 1, 2, or 3 at the axis of rotation on the sphere surface. Particles are ground state solutions of quantized Friedmann equations from general relativity, with differing internal gravitational constants. Energy distribution within particles identifies Standard Model particles with spheres containing central black holes with mass m, and particle spin resulting from black hole angular momentum. In each charge state, energy distribution within particles satisfies a cubic equation in l, allowing only three particles in the charge state and requiring neutrino mass. Cosmic vacuum energy density is a lower limit on energy density of systems in the universe, and setting electron neutrino average energy density equal to cosmic vacuum energy density predicts neutrino masses consistent with experiment. Relations between charged fermion wavelength solutions to cubic equations in different charge states determine charged fermion masses relative to electron mass as a consequence of charge neutrality of the universe. An appendix shows assigning charge ±e/6 to bits of information on the event horizon available for holographic description of physics in the observable universe accounts for dominance of matter over anti-matter. The analysis explains why only three Standard Models are in each charge state and predicts neutrino masses based on cosmic vacuum energy density as a lower bound on neutrino energy density.展开更多
Comparison of the Hubble parameter with cosmological quantities strongly supports the black hole model for the description of the Universe evolution. Such evolution requires matter creation and has implications for wh...Comparison of the Hubble parameter with cosmological quantities strongly supports the black hole model for the description of the Universe evolution. Such evolution requires matter creation and has implications for what is currently referred to as “dark energy” and the “cosmological constant”.展开更多
The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a ve...The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a very large object but with a big mass is in its own right a black hole. As a consequence, the extrapolation of the past predicts for the future no big crunch, nor big bounce but a steady expansion with smaller matter density.展开更多
Estimation of the volume of information in black holes is necessary for generation of restrictions for their formation, development and interconversion. Information is an integral part of the Universe. By its physical...Estimation of the volume of information in black holes is necessary for generation of restrictions for their formation, development and interconversion. Information is an integral part of the Universe. By its physical essence information is heterogeneity of matter and energy. The universal measure of physical heterogeneity of information is the Shannon in- formation entropy. It is important to note that the Neumann entropy cannot be applied as the universal measure of het- erogeneity because it is equal to zero for structured pure state. Therefore information is inseparably connected with matter and energy. The informatics laws of nature are: the basic law of Zeilinger’s quantum mechanics postulates that the elementary physical system (in particular, fundamental particles: quarks, leptons,…) bears one bit of information, the law of simplicity of complex systems, the law of uncertainty (information) conservation, the law of finiteness of complex systems characteristics, the law of necessary variety by W. Ashby, and the theorem of K. Gödel. The law of finiteness of complex systems characteristics and the principle of necessary variety by W. Ashby impose restrictions on the topology and symmetry of the universe. The author’s works testify about the practicality of information laws simultaneously with physical rules for cognition of the Universe. The results presented in this paper show the effectiveness of informational approach to studying the black holes. The article discusses the following questions: The volume of information in the black hole, Emission and absorption of usual substance by a black hole, Formation and development (changing) of black holes, Black hole merger. Black hole is called optimal if information content is minimal at the University region. Optimal black holes can exist when at least the two types of substance are available in the Universe: with non-linear and linear correspondence between information content and mass. Information content of optimal black hole is proportional to squared coefficient correlating information content with mass in usual substance and in inverse proportion to coefficient correlating information content with black hole mass. Concentration of mass in optimal black hole minimizes information content in the system “usual substance—black holes”. Minimal information content of the Universe consisting of optimal black holes only is twice as less as information content available of the Universe of the same mass filled with usual substance only. An information approach along with a physical one allows obtaining new, sometimes more general data in relation to data obtained on the ground of physical rules only.展开更多
The information paradox first surfaced in the early 1970s when Stephen Hawking of Cambridge University suggested that black holes are not totally black. Hawking showed that particle-antiparticle pairs generated at the...The information paradox first surfaced in the early 1970s when Stephen Hawking of Cambridge University suggested that black holes are not totally black. Hawking showed that particle-antiparticle pairs generated at the event horizon—the outer periphery of a black hole—would be separated. One particle would fall into the black hole while the other would escape, making the black hole a radiating body. Characteristics of the emission and absorption of usual substance by a black hole can be described by information models. Estimation of the volume of information in black holes is necessary for generation of restrictions for their formation, development and interconversion. Information is an integral part of the Universe. By its physical essence information is heterogeneity of matter and energy. Therefore information is inseparably connected with matter and energy. An information approach along with a physical one allows to obtain new, sometimes more general data in relation to data obtained on the ground of physical rules only. The author’s works, testify about the practicality of information laws usage simultaneously with physical rules for cognition of the Universe. The results presented in this paper show the effectiveness of informational approach for studying the black holes. The article discusses the following questions: The volume of information in the black hole;Information model of a black hole;Characteristics of the emission and absorption of usual substance by a black hole describes the information model of a black hole;The information paradox;A simple explanation of the information paradox by the information model of a black hole.展开更多
This is a second follow up paper on a model, which treats the black hole as a 4-D spatial ball filled with blackbody radiation. For the interior radiative mass distribution, we employ a new type of truncated probabili...This is a second follow up paper on a model, which treats the black hole as a 4-D spatial ball filled with blackbody radiation. For the interior radiative mass distribution, we employ a new type of truncated probability distribution function, the exponential distribution. We find that this distribution comes closest to reproducing a singularity at the center, and yet it is finite at 4-D radius, . This distribution will give a constant gravitational acceleration for a test particle throughout the black hole, irrespective of radius. The 4-D gravitational acceleration is given by the expression, , where R is the radius of the black hole, MR is its mass, and is the exponential shape parameter, which depends only on the mass, or radius, of the black hole. We calculate the gravitational force, and the entropy within the black hole interior, as well as on its surface, identified as the event horizon, which separates 3-D from 4-D space. Similar to a truncated Gaussian distribution, the gravitational force increases discontinuously, and dramatically, upon entry into the 4-D black hole from the 3-D side. It is also radius dependent within the 4-D black hole. Moreover, the total entropy is shown to be much less than the Bekenstein result, similar to the truncated Gaussian. For the gravitational force, we obtain, , where Mr is the radiative mass enclosed within a 4-D volume of radius r. This unusual force law indicates that the gravitational force acting upon a layer of blackbody photons at radius r is strictly proportional to the enclosed radiative energy, MrC2, contained within that radius, with 0.1λ being the constant of proportionality. For the entropy at radius, r, and on the surface, we obtain an expression which is order of magnitude comparable to the truncated Normal distribution. Tables are presented for three black holes, one having a mass equal to that of the sun. The other two have masses, which are ten times that of the sun, and 106 solar masses. The corresponding parameters are found to equal, , respectively. We compare these results to the truncated Gaussian distribution, which were worked out in another paper.展开更多
A black hole is treated as a self-contained, steady state, spherically symmetric, 4-dimensional spatial ball filled with blackbody radiation, which is embedded in 3-D space. To model the interior distribution of radia...A black hole is treated as a self-contained, steady state, spherically symmetric, 4-dimensional spatial ball filled with blackbody radiation, which is embedded in 3-D space. To model the interior distribution of radiation, we invoke two stellar-like equations, generalized to 4-D space, and a probability distribution function (pdf) for the actual radiative mass distribution within its interior. For our purposes, we choose a truncated Gaussian distribution, although other pdf’s with support, r ∈[0, R], are possible. The variable, r = r(4), refers to the 4-D radius within the black hole. To fix the coefficients, (μ,σ), associated with this distribution, we choose the mode to equal zero, which will give maximum energy density at the center of the black hole. This fixes the parameter, μ = 0. Our black hole does not have a singularity at the center, and, moreover, it is well-behaved within its volume. The rip or tear in the space-time continuum occurs at the event horizon, as shown in a previous work, because it is there that we transition from 3-D space to 4-D space. For the shape parameter, σ , we make use of the temperature just inside the event horizon, which is determined by the mass, or radius, of the black hole. The amount of radiative heat inflow depends on mass, or radius, and temperature, T2 ≥ 2.275K , where, T2, is the temperature just outside the event horizon. Among the interesting consequences of this model is that the entropy, S(4), can be calculated as an extrinsic, versus intrinsic, variable, albeit in 4-D space. It is found that S(4) is much less than the comparable Bekenstein result. It also scales not as, R2 , where R is the radius of the black hole. Rather, it is given by an expression involving the lower incomplete gamma function, γ(s,x), and interestingly, scales with a more complicated function of radius. Thus, within our framework, the black hole is a highly-ordered state, in sharp contrast to current consensus. Moreover, the model-dependent gravitational “constant” in 4-D space, Gr(4), can be determined, and this will depend on radius. For the specific pdf chosen, Gr(4)Mr = 0.1c2(r4/σ2), where Mr is the enclosed radiative mass of the black hole, up to, and including, radius r. At the event horizon, where, r = R, this reduces to GR(4) = 0.2GR3/σ2, due to the Schwarzschild relation between mass and radius. The quantity, G, is Newton’s constant. There is a sharp discontinuity in gravitational strength at the 3-D/4-D interface, identified as the event horizon, which we show. The 3-D and 4-D gravitational potentials, however, can be made to match at the interface. This lines up with previous work done by the author where a discontinuity between 3-D and 4-D quantities is required in order to properly define a positive-definite radiative surface tension at the event horizon. We generalize Gauss’ law in 4-D space as this will enable us to find the strength of gravity at any radius within the spherically symmetric, 4-D black hole. For the pdf chosen, gr(4) = Gr(4)Mr/r3 = 0.1c2r/σ2, a remarkably simple and elegant result. Finally, we show that the work required to assemble the black hole against radiative pressure, which pushes out, is equal to, 0.1MRc2. This factor of 0.1 is specific to 4-D space.展开更多
A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation...A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.展开更多
For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantag...For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.展开更多
In this paper,a canonical ensemble model for black hole quantum tunneling radiation is introduced.We find that the probability distribution function is the same as the emission rate of a spherical shell in the Parikh-...In this paper,a canonical ensemble model for black hole quantum tunneling radiation is introduced.We find that the probability distribution function is the same as the emission rate of a spherical shell in the Parikh-Wilczek tunneling framework.With this model,the probability distribution function corresponding to the emission shell system is calculated.Therefore,the concrete quantum tunneling spectrum of the Schwarzschild black hole is obtained.展开更多
Despite of the small amount in the atmosphere,ozone is one of the most critical atmospheric component as it protects human beings and any other life on the earth from the sun's high frequency ultraviolet radiation...Despite of the small amount in the atmosphere,ozone is one of the most critical atmospheric component as it protects human beings and any other life on the earth from the sun's high frequency ultraviolet radiation. In recent decades,the global ozone depletion caused by human activities is w ell know n and produces an " ozone hole",the most direct consequence of w hich is the increase in ultraviolet radiation,w hich w ill affect human survival,climatic environment,ecological environment and other important adverse impacts. Due to the implementation of the M ontreal protocol and other agreement,the total amount of ozone depleting substance in the atmosphere has been prominent reduced,w hich w ill lead to a new round of regional climate change.Therefore,predicting the changes of the total ozone in the future w ill have an important guiding significance for predicting the future climate change and making reasonable measures to deal w ith the climate change. In this paper,based on the ozone data of 1979 to 2016 in the southern hemisphere and ARIM A model algorithm,using time series analysis,w e obtain prediction effect of ARIM A model is good by Ljung-Box Q-test and R^2,and the model can be used to predict the future ozone change. With the help of SPSS softw are,the future trend of the total ozone can be predicted in the future 50 years. Based on the above experiment results,the global ozone change in the future 50 years can be forecasted,namely the atmospheric ozone layer w ill return to its 1980's standard by the middle of this century at the global scale.展开更多
In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arisi...In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.展开更多
文摘The black hole model will be excluded by a very strong radial magnetic field near the Galactic Center which has been detected in 2013. Following it, the explosion mechanism, for both supernova and the hot big bang of the Universe, driven by magnetic monopoles is proposed in this paper.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10773002, 10875012, and 11175019)the Fundamental Research Funds for the Central Universities, China (Grant No. 105116)
文摘The recent work of Nation et al., in which the Hawking radiation energy and entropy flow from a black hole is considered to be produced in a one-dimensional Landauer transport process, is extended to the case of a Reissner- Nordstrom black hole. The energy flow contains not only the contribution of the thermal flux but also that of the particle flux. It is found that the charge can also be transported via the one-dimensional quantum tunnel. Because of the existence of the electrostatic potential, the entropy production rate is shown to be smaller than that of the Schwarzschild black hole.
文摘The Standard Model of particle physics does not account for charged fermion mass values and neutrino mass, or explain why only three particles are in each charge state 0, -e/3, 2e/3, and -e. These issues are addressed by treating Standard Model particles with mass m as spheres with diameter equal to their Compton wavelength l =ħ/mc, where ħis Planck’s constant and c the speed of light, and any charge in diametrically opposed pairs ±ne/6 with n = 1, 2, or 3 at the axis of rotation on the sphere surface. Particles are ground state solutions of quantized Friedmann equations from general relativity, with differing internal gravitational constants. Energy distribution within particles identifies Standard Model particles with spheres containing central black holes with mass m, and particle spin resulting from black hole angular momentum. In each charge state, energy distribution within particles satisfies a cubic equation in l, allowing only three particles in the charge state and requiring neutrino mass. Cosmic vacuum energy density is a lower limit on energy density of systems in the universe, and setting electron neutrino average energy density equal to cosmic vacuum energy density predicts neutrino masses consistent with experiment. Relations between charged fermion wavelength solutions to cubic equations in different charge states determine charged fermion masses relative to electron mass as a consequence of charge neutrality of the universe. An appendix shows assigning charge ±e/6 to bits of information on the event horizon available for holographic description of physics in the observable universe accounts for dominance of matter over anti-matter. The analysis explains why only three Standard Models are in each charge state and predicts neutrino masses based on cosmic vacuum energy density as a lower bound on neutrino energy density.
文摘Comparison of the Hubble parameter with cosmological quantities strongly supports the black hole model for the description of the Universe evolution. Such evolution requires matter creation and has implications for what is currently referred to as “dark energy” and the “cosmological constant”.
文摘The black hole model of the Universe evolution, accompanied by matter creation, already successfully accounting for many features of the past is discussed and further justified. It is once more stressed that even a very large object but with a big mass is in its own right a black hole. As a consequence, the extrapolation of the past predicts for the future no big crunch, nor big bounce but a steady expansion with smaller matter density.
文摘Estimation of the volume of information in black holes is necessary for generation of restrictions for their formation, development and interconversion. Information is an integral part of the Universe. By its physical essence information is heterogeneity of matter and energy. The universal measure of physical heterogeneity of information is the Shannon in- formation entropy. It is important to note that the Neumann entropy cannot be applied as the universal measure of het- erogeneity because it is equal to zero for structured pure state. Therefore information is inseparably connected with matter and energy. The informatics laws of nature are: the basic law of Zeilinger’s quantum mechanics postulates that the elementary physical system (in particular, fundamental particles: quarks, leptons,…) bears one bit of information, the law of simplicity of complex systems, the law of uncertainty (information) conservation, the law of finiteness of complex systems characteristics, the law of necessary variety by W. Ashby, and the theorem of K. Gödel. The law of finiteness of complex systems characteristics and the principle of necessary variety by W. Ashby impose restrictions on the topology and symmetry of the universe. The author’s works testify about the practicality of information laws simultaneously with physical rules for cognition of the Universe. The results presented in this paper show the effectiveness of informational approach to studying the black holes. The article discusses the following questions: The volume of information in the black hole, Emission and absorption of usual substance by a black hole, Formation and development (changing) of black holes, Black hole merger. Black hole is called optimal if information content is minimal at the University region. Optimal black holes can exist when at least the two types of substance are available in the Universe: with non-linear and linear correspondence between information content and mass. Information content of optimal black hole is proportional to squared coefficient correlating information content with mass in usual substance and in inverse proportion to coefficient correlating information content with black hole mass. Concentration of mass in optimal black hole minimizes information content in the system “usual substance—black holes”. Minimal information content of the Universe consisting of optimal black holes only is twice as less as information content available of the Universe of the same mass filled with usual substance only. An information approach along with a physical one allows obtaining new, sometimes more general data in relation to data obtained on the ground of physical rules only.
文摘The information paradox first surfaced in the early 1970s when Stephen Hawking of Cambridge University suggested that black holes are not totally black. Hawking showed that particle-antiparticle pairs generated at the event horizon—the outer periphery of a black hole—would be separated. One particle would fall into the black hole while the other would escape, making the black hole a radiating body. Characteristics of the emission and absorption of usual substance by a black hole can be described by information models. Estimation of the volume of information in black holes is necessary for generation of restrictions for their formation, development and interconversion. Information is an integral part of the Universe. By its physical essence information is heterogeneity of matter and energy. Therefore information is inseparably connected with matter and energy. An information approach along with a physical one allows to obtain new, sometimes more general data in relation to data obtained on the ground of physical rules only. The author’s works, testify about the practicality of information laws usage simultaneously with physical rules for cognition of the Universe. The results presented in this paper show the effectiveness of informational approach for studying the black holes. The article discusses the following questions: The volume of information in the black hole;Information model of a black hole;Characteristics of the emission and absorption of usual substance by a black hole describes the information model of a black hole;The information paradox;A simple explanation of the information paradox by the information model of a black hole.
文摘This is a second follow up paper on a model, which treats the black hole as a 4-D spatial ball filled with blackbody radiation. For the interior radiative mass distribution, we employ a new type of truncated probability distribution function, the exponential distribution. We find that this distribution comes closest to reproducing a singularity at the center, and yet it is finite at 4-D radius, . This distribution will give a constant gravitational acceleration for a test particle throughout the black hole, irrespective of radius. The 4-D gravitational acceleration is given by the expression, , where R is the radius of the black hole, MR is its mass, and is the exponential shape parameter, which depends only on the mass, or radius, of the black hole. We calculate the gravitational force, and the entropy within the black hole interior, as well as on its surface, identified as the event horizon, which separates 3-D from 4-D space. Similar to a truncated Gaussian distribution, the gravitational force increases discontinuously, and dramatically, upon entry into the 4-D black hole from the 3-D side. It is also radius dependent within the 4-D black hole. Moreover, the total entropy is shown to be much less than the Bekenstein result, similar to the truncated Gaussian. For the gravitational force, we obtain, , where Mr is the radiative mass enclosed within a 4-D volume of radius r. This unusual force law indicates that the gravitational force acting upon a layer of blackbody photons at radius r is strictly proportional to the enclosed radiative energy, MrC2, contained within that radius, with 0.1λ being the constant of proportionality. For the entropy at radius, r, and on the surface, we obtain an expression which is order of magnitude comparable to the truncated Normal distribution. Tables are presented for three black holes, one having a mass equal to that of the sun. The other two have masses, which are ten times that of the sun, and 106 solar masses. The corresponding parameters are found to equal, , respectively. We compare these results to the truncated Gaussian distribution, which were worked out in another paper.
文摘A black hole is treated as a self-contained, steady state, spherically symmetric, 4-dimensional spatial ball filled with blackbody radiation, which is embedded in 3-D space. To model the interior distribution of radiation, we invoke two stellar-like equations, generalized to 4-D space, and a probability distribution function (pdf) for the actual radiative mass distribution within its interior. For our purposes, we choose a truncated Gaussian distribution, although other pdf’s with support, r ∈[0, R], are possible. The variable, r = r(4), refers to the 4-D radius within the black hole. To fix the coefficients, (μ,σ), associated with this distribution, we choose the mode to equal zero, which will give maximum energy density at the center of the black hole. This fixes the parameter, μ = 0. Our black hole does not have a singularity at the center, and, moreover, it is well-behaved within its volume. The rip or tear in the space-time continuum occurs at the event horizon, as shown in a previous work, because it is there that we transition from 3-D space to 4-D space. For the shape parameter, σ , we make use of the temperature just inside the event horizon, which is determined by the mass, or radius, of the black hole. The amount of radiative heat inflow depends on mass, or radius, and temperature, T2 ≥ 2.275K , where, T2, is the temperature just outside the event horizon. Among the interesting consequences of this model is that the entropy, S(4), can be calculated as an extrinsic, versus intrinsic, variable, albeit in 4-D space. It is found that S(4) is much less than the comparable Bekenstein result. It also scales not as, R2 , where R is the radius of the black hole. Rather, it is given by an expression involving the lower incomplete gamma function, γ(s,x), and interestingly, scales with a more complicated function of radius. Thus, within our framework, the black hole is a highly-ordered state, in sharp contrast to current consensus. Moreover, the model-dependent gravitational “constant” in 4-D space, Gr(4), can be determined, and this will depend on radius. For the specific pdf chosen, Gr(4)Mr = 0.1c2(r4/σ2), where Mr is the enclosed radiative mass of the black hole, up to, and including, radius r. At the event horizon, where, r = R, this reduces to GR(4) = 0.2GR3/σ2, due to the Schwarzschild relation between mass and radius. The quantity, G, is Newton’s constant. There is a sharp discontinuity in gravitational strength at the 3-D/4-D interface, identified as the event horizon, which we show. The 3-D and 4-D gravitational potentials, however, can be made to match at the interface. This lines up with previous work done by the author where a discontinuity between 3-D and 4-D quantities is required in order to properly define a positive-definite radiative surface tension at the event horizon. We generalize Gauss’ law in 4-D space as this will enable us to find the strength of gravity at any radius within the spherically symmetric, 4-D black hole. For the pdf chosen, gr(4) = Gr(4)Mr/r3 = 0.1c2r/σ2, a remarkably simple and elegant result. Finally, we show that the work required to assemble the black hole against radiative pressure, which pushes out, is equal to, 0.1MRc2. This factor of 0.1 is specific to 4-D space.
文摘A complementarity hypothesis concerning outsider and insider perspectives of a gargantuan black hole is proposed. The two thought experiments presented herein are followed by a brief discussion of a new interpretation of black hole interior “space-and-time-reversal”. Specifically, it is proposed that the “singularity” space of the black hole interior is time-like and the expansion time of the black hole interior is space-like. The resemblance of this new insider interpretation to our own expanding and redshifting big bang universe is compelling.
基金Project(BK2012812)supported by the Natural Science Foundation of Jiangsu Province,ChinaProject(51079053)supported by the National Natural Science Foundation of China+2 种基金Project(KYLX_0493)supported by the Scientific Research and Innovation Program for College Graduates of Jiangsu Province,ChinaProject(2014B38814)supported by the Fundamental Research Funds for Central Universities,ChinaProject(2014.1526)supported by the Open Research Fund Program of Key Laboratory of Geological Information of Ministry of Land and Resources,China
文摘For the interaction relation between geological object and engineering object in some fields related to water conservancy and hydropower, a unified modeling idea was proposed. On the basis of summarizing both advantages and disadvantages of existing modeling methods, an automatic unified modeling method of both engineering and geological objects based on tri-prism(TP) model was presented. Through the lossless correction algorithm of deviated drill holes contained in this method, the real deviated drill holes could be corrected into the equivalent virtual vertical ones. And the correction accuracy fully meets the requirements of unified modeling. With the virtual vertical drilling data, TIN construction of both cover layer and other stratums would be built in order to obtain the 3D geological model. Then, the engineering design data would be introduced into the 3D geological model for achieving unified modeling. For this process, the volume subdividing and restructuring principles were introduced to deal with the spatial relationships between engineering object and geological object. In order to improve the efficiency of unified modeling, the reconstruction of TIN based on constraint information was also applied in this method. At last, the feasibility and validation of the unified modeling method as well as its relevant key algorithms were verified by specific experiments and analysis of results.
基金supported by the National Natural Science Foundation of China(Grant Nos.11273009 and 11303006)
文摘In this paper,a canonical ensemble model for black hole quantum tunneling radiation is introduced.We find that the probability distribution function is the same as the emission rate of a spherical shell in the Parikh-Wilczek tunneling framework.With this model,the probability distribution function corresponding to the emission shell system is calculated.Therefore,the concrete quantum tunneling spectrum of the Schwarzschild black hole is obtained.
基金supported by the key laboratory fund of Hubei province (Grant No. 2015KLA0,DZ-2016-01-H )graduate research innovation Project of NCIAE (No. YKY2016-08 )the science and technology research projects of Hebei province (Grant No. ZD 2016 106 )
文摘Despite of the small amount in the atmosphere,ozone is one of the most critical atmospheric component as it protects human beings and any other life on the earth from the sun's high frequency ultraviolet radiation. In recent decades,the global ozone depletion caused by human activities is w ell know n and produces an " ozone hole",the most direct consequence of w hich is the increase in ultraviolet radiation,w hich w ill affect human survival,climatic environment,ecological environment and other important adverse impacts. Due to the implementation of the M ontreal protocol and other agreement,the total amount of ozone depleting substance in the atmosphere has been prominent reduced,w hich w ill lead to a new round of regional climate change.Therefore,predicting the changes of the total ozone in the future w ill have an important guiding significance for predicting the future climate change and making reasonable measures to deal w ith the climate change. In this paper,based on the ozone data of 1979 to 2016 in the southern hemisphere and ARIM A model algorithm,using time series analysis,w e obtain prediction effect of ARIM A model is good by Ljung-Box Q-test and R^2,and the model can be used to predict the future ozone change. With the help of SPSS softw are,the future trend of the total ozone can be predicted in the future 50 years. Based on the above experiment results,the global ozone change in the future 50 years can be forecasted,namely the atmospheric ozone layer w ill return to its 1980's standard by the middle of this century at the global scale.
文摘In this paper the entropy of a toroidal black hole due to a scalar field is investigated by using the DLM scheme. The entropy is renormalized to the standard Bekenstein-Hawking formula with a one-loop correction arising from the higher curvature terms of the gravitational action. For the scalar field, the renormalized Newton constant and two renormalized coupling constants in the toroidal black hole are the same as those in the Reissner-Nordstrom black hole except for other one.