期刊文献+
共找到54篇文章
< 1 2 3 >
每页显示 20 50 100
Solidification researches using transparent model materials——A review 被引量:3
1
作者 HUANG WeiDong WANG LiLin 《Science China(Technological Sciences)》 SCIE EI CAS 2012年第2期377-386,共10页
A review is given in the paper for solidification researches with transparent model materials. The effective experimental me- thod was first proposed by Jackson and Hunt in 1965. The transparent model materials for so... A review is given in the paper for solidification researches with transparent model materials. The effective experimental me- thod was first proposed by Jackson and Hunt in 1965. The transparent model materials for solidification researches are a kind of non-faceted crystals known as "plastic crystals" or "globular molecules", which have very low entropy of melting as that of metals. According to Jackson's theory proposed in 1958, entropy of phase transformation will determine whether the phase interface morphology is smooth or rough in atomic scale, which will lead to faceted or nonfacted phase interface in mi- croscopic and macroscopic scales. Succinonitrile (SCN) and its alloys with water, ethanol, acetone, and NH4C1-H:O solution are most commonly used as transparent model materials for solidification researches of dendritic growth, anisotropy of solid-liquid interfacial energy, crystal nucleation, crystal grain formation, directional solidification, eutectic and peritectic so- lidification, solidification defects formation such as bubble, hot tearing, etc. Among these researches, the most impressive work was the critical test of dendritic growth theories with high purity succinonitrile by Glicksman et al., which gave positive answer to the Ivantsov's analysis and negative answer to the ad hoc condition of the maximum velocity hypothesis. The future researches with transparent model materials could be suggested in three aspects: 1) accurate measurement of material proper- ties and alloy phase diagrams in more plastic crystals, especially to find more transparent eutectic and peritectic alloys; 2) accurate measurement of the grain boundary groove shape to obtain precise data of the anisotropy parameters of the interfacial free energy in transparent model materials; 3) to get clear pictures of solidification processes with morphology details in a rela- tively large area, with continuous movement of liquid and particles, in order to give experimental support to numerical simula- tions aimming at accurate description of microstructure formation during solidification of multicomponent alloys under complex conditions of real casting and welding processes. 展开更多
关键词 transparent model materials SOLIDIFICATION plastic crystal dendritic growth
原文传递
Material Removal Model Considering Influence of Curvature Radius in Bonnet Polishing Convex Surface 被引量:6
2
作者 SONG Jianfeng YAO Yingxue 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第6期1109-1116,共8页
The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwe... The bonnet tool polishing is a novel, advanced and ultra-precise polishing process, by which the freeform surface can be polished. However, during the past few years, not only the key technology of calculating the dwell time and controlling the surface form in the bonnet polishing has been little reported so far, but also little attention has been paid to research the material removal function of the convex surface based on the geometry model considering the influence of the curvature radius. Firstly in this paper, for realizing the control of the freeform surface automatically by the bonnet polishing, on the basis of the simplified geometric model of convex surface, the calculation expression of the polishing contact spot on the convex surface considering the influence of the curvature radius is deduced, and the calculation model of the pressure distribution considering the influence of the curvature radius on the convex surface is derived by the coordinate transformation. Then the velocity distribution model is built in the bonnet polishing the convex surface. On the basis of the above research and the semi-experimental modified Preston equation obtained from the combination method of experimental and theoretical derivation, the material removal model of the convex surface considering the influence of the curvature radius in the bonnet polishing is established. Finally, the validity of the model through the simulation method has been validated. This research presents an effective prediction model and the calculation method of material removal for convex surface in bonnet polishing and prepares for the bonnet polishing the free surface numerically and automatically. 展开更多
关键词 bonnet polishing convex surface material removal model curvature radius
下载PDF
Development of Mathematical Model on Preparation of Functionally Graded Material by Co-sedimentation 被引量:6
3
作者 Zhongmin YANG, Lianmeng ZHANG and Qiang SHEN Institute of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第2期275-277,共3页
From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and... From the process of sedimentation the mathematical relationships among deposition Volume and powder properties as well as sedimentation parameters were deduced. Based on the formula a mathematical model was set up and simulated through the computer. At last the validity of mathematical model was supported by the representative experiment on Ti-Mo system FGM prepared by co-sedimentation. 展开更多
关键词 CO MO Development of Mathematical model on Preparation of Functionally Graded material by Co-sedimentation
下载PDF
Fatigue analysis of closed-cell aluminium foam using different material models 被引量:1
4
作者 M.ULBIN S.GLODEŽ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2787-2796,共10页
The fatigue analyses of AlSi7 closed-cell aluminium foam were performed using a real porous model and three different homogenised material models:crushable foam model,isotropic hardening model and kinematic hardening ... The fatigue analyses of AlSi7 closed-cell aluminium foam were performed using a real porous model and three different homogenised material models:crushable foam model,isotropic hardening model and kinematic hardening model.The numerical analysis using all three homogenised material models is based on the available experimental results previously determined from fatigue tests under oscillating tensile loading with the stress ratio R=0.1.The obtained computational results have shown that both isotropic and kinematic hardening models are suitable to analyse the fatigue behaviour of closed-cell aluminium foam.Besides,the kinematic hardening material model has demonstrated significantly shorter simulation time if compared to the isotropic hardening material model.On the other hand,the crushable foam model is recognized as an inappropriate approach for the fatigue analyses under tension loading conditions. 展开更多
关键词 closed-cell aluminium foams FATIGUE numerical analysis material model
下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
5
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 Graded element model Functionally graded materials Hybrid FEM Transient heat conduction
下载PDF
Elasto-plastic analysis of masonry with anisotropic plastic material model 被引量:1
6
作者 闫凯 郑文忠 王英 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2011年第5期74-80,共7页
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fractu... This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications. 展开更多
关键词 MASONRY anisotropic plastic material model ISOTROPIC yield criterion elasto-plastic analysis
下载PDF
Multi-Material Topology Optimization of Structures Using an Ordered Ersatz Material Model 被引量:1
7
作者 Baoshou Liu Xiaolei Yan +2 位作者 Yangfan Li Shiwei Zhou Xiaodong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期523-540,共18页
This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental... This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental density is used to overcome the occurrence of meaningless design variables and save computational cost.Different from the traditional material penalization scheme,the algorithm is established on the ordered ersatz material model,which linearly interpolates Young’s modulus for relaxed design variables.To achieve a multi-material design,the multiple floating projection constraints are adopted to gradually push elemental design variables to multiple discrete values.For the convergent element-based solution,the multiple level-set functions are constructed to tentatively extract the smooth interface between two adjacent materials.Some 2D and 3D numerical examples are presented to demonstrate the effectiveness of the proposed algorithm and the possible advantage of the multi-material designs over the traditional solid-void designs. 展开更多
关键词 Multi-material topology optimization ordered ersatz material model mass constraint single variable
下载PDF
Deformation Stability of GH4033 Superalloy in the Hot Continuous Rolling Process Based on Dynamic Material Model and Finite Element Model 被引量:1
8
作者 WANG Panpan XI Taotao +1 位作者 SUI Fengli YANG Lianjin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2022年第3期490-499,共10页
The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical... The flow stress behavior of GH4033 superalloy was determined by the hot compression tests at the temperatures of 1223-1473 K and the total strains of 0.6 with the strain rates of 0.001-30.0 s^(-1) by using cylindrical samples.The processing maps based on the dynamic material model(DMM)combined with the corresponding microstructure observations indicate the reasonable processing domain locating at the strain rates of 0.1-1.0 s^(-1) and the deformation temperature of 1273-1423 K.Meanwhile,the numerical simulation based on finite element model(FEM)described the variation of the effective strain,effective strain rate and the temperature for the core node,and unveiled the influence of the hot rolling parameters considering the initial temperature(T_(0))range of 1223-1473 K and the first-stand biting velocity(v_(0))range of 0.15-0.35 m·s^(-1).Furthermore,the deformation stability of GH4033 superalloy in the round rod hot continuous rolling(HCR)process is described and analyzed by coupling the three-dimensional(3-D)processing map,and the spatial trajectory lines were determined by the numerically simulated temperatures,the strains and the strain rates.Finally,the results show that the hot deformation stability of GH4033 can be achieved by the rolling process parameters located at T_(0)=1423 K and v_(0)=0.25 m·s^(-1).Additionally,the practical HCR processes as T_(0)=1423 K and v_(0)=0.15,0.25,0.35 m·s^(-1) were operated to verify the influence of the hot rolling parameters on the hot deformation stability by the microstructure observation of the final products. 展开更多
关键词 GH4033 superalloy dynamic material model finite element model hot continuous rolling hot deformation stability
下载PDF
Correlation between Single Factor Material Constitutive Model Parameters and Temperature for Ti6Al4V Alloy 被引量:1
9
作者 YANG Yong LI Jianfeng SUN Jie 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2010年第5期574-581,共8页
Accurate material constitutive model is considered highly necessary to perform finite element simulation and analysis.However,it is difficult to establish the material constitutive model because of uncertainty of math... Accurate material constitutive model is considered highly necessary to perform finite element simulation and analysis.However,it is difficult to establish the material constitutive model because of uncertainty of mathematical relationship and constraint of existing experimental condition.At present,there exists considerable gap between finite element simulation result and actual cutting process.Particular emphases were put on investigating the correlation between "single factor" material constitutive model parameters and temperature for Ti6Al4V alloy,and also establishment of material constitutive model for this kind of material.Theoretical analyses based on dislocation theory and material functional relations showed that material model was deeply affected by variation temperature.By the least squares best fit to the available quasi-static and high-speed impact compression experiment data,material parameters at various temperatures were found.Experimental curves analyses and material parameters comparison showed that the "single factor" material constitutive model parameters were temperature dependent.Using the mathematical mapping between material parameters and temperature,"single factor" material constitutive model of Ti6Al4V alloy was established,which was proven to be right by comparing with experimental measurements.This work makes clear that the "single factor" material constitutive model parameters of Ti6Al4V alloy are temperature dependent.At the same time,an accurate material constitutive model is established,which helps to optimize cutting process and control machining distortion for Ti6Al4V alloy aerospace parts. 展开更多
关键词 metal cutting Ti6Al4V alloy finite element method material constitutive model
下载PDF
STUDY ON JOINING PROCESS FOR LAMINATED OBJECT MANUFACTURING USING METALAS MODELING MATERIALS
10
作者 YiShuping ZhangJin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2003年第1期4-6,共3页
In order to solve some key problems associated with the rapid manufacturingof metallic functional part, a new technique using vacuum solid-state pressure diffusion weldingprocess to join the metallic slice sheets is p... In order to solve some key problems associated with the rapid manufacturingof metallic functional part, a new technique using vacuum solid-state pressure diffusion weldingprocess to join the metallic slice sheets is put forward. The following results can be drawn fromthe experiments: only 1 percent shrinkage happened in the stack direction and it came from theregular system error. The atoms diffuse between joint interfaces clearly and new grains formedmeanwhile. The average shear strength of welding zone is more than 100 MPa and micro hardness ofwelding zone is almost the same as that of matrix. It is shown from above results that the vacuumsolid-state pressure diffusion welding process is an available technique to join metal slice sheetsfor the rapid manufacturing of metallic functional parts. 展开更多
关键词 Laminated object manufacturing Metallic modeling materials Vacuumsolid-state pressure diffusion welding
下载PDF
An Elastic-Plastic Iceberg Material Model Considering Temperature Gradient Effects and its Application to Numerical Study
11
作者 Chu Shi Zhiqiang Hu Yu Luo 《Journal of Marine Science and Application》 CSCD 2016年第4期370-375,共6页
To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it r... To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the ‘Tsai-Wu’ yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of icebergs. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg. 展开更多
关键词 iceberg material model FPSO-iceberg collision temperature gradient numerical simulation iceberg shape failure criteria
下载PDF
SIMULATION OF STRATA MOVEMENTS DUE TO UNDERGROUND MINING USING AN AUTOMATED MEASUREMENT SYSTEM FOR EQUIVALENT MATERIAL MODELING FACILITY
12
作者 张玉卓 YoginderP.Chugh 《Journal of Coal Science & Engineering(China)》 1996年第1期10-15,共6页
Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts... Strata movement simulation was conducted in an equivalent material modeling facility developed by the Department of Mining Engineering, Southern Illinois University at Carbondale, under U. S. Bureau of Mines contracts. An innovative displacement measurement system called videogrammetric system was developed and utilized for recording, measuring and analyzing the deformation and failure process of the models. A room and pillar mining and a longwall mining prototypes were studied in the modeling. Study found that weak floor of coal seam plays an important role in pillar stability and therefore the overburden movements. 展开更多
关键词 equivalent material modeling strata movement videogrammetric system
下载PDF
Establishment and Analysis on Material Flow Model in Argo-animal Husbandry Ecosystem
13
作者 Yin Hai-dong Liu Zhen-zhong Wu Qiu-feng 《Journal of Northeast Agricultural University(English Edition)》 CAS 2013年第1期60-64,共5页
This paper analyzed the material flow situation in argo-animal husbandry ecosystem by compartment model. This model was an important mean for investigating the whole structural characteristics in ecosystem. Based on t... This paper analyzed the material flow situation in argo-animal husbandry ecosystem by compartment model. This model was an important mean for investigating the whole structural characteristics in ecosystem. Based on this analysis, characteristics of material cycle and integrity in the system were mastered. As an example of natural conditions in Yonghe Village, Shuangcheng Township, Shuangeheng Municipal, Heilongjang Province, the system of linear differential equations in system was established by extracting each compartment and investigating material flow and stability of this model was proved by Lyapunov linear theory. The result showed that this system could not be interfered by initial value in the state of present, input and output. 展开更多
关键词 compartment model material flow model argo-animal husbandry ecosystem STABILITY
下载PDF
A Biomimetic Model of Fiber-reinforced Composite Materials
14
作者 Shihong LI Ronghui ZHANG +1 位作者 Shaoyun FU Xin CHEN and Benlian ZHOU(Institute of Metal Research, Academia Sinica, Shenyang, 110015, China)Qiyun ZENG(Institute of Applied Ecology, Academia Sinica, Shenyang, 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第1期34-38,共5页
In thjs paper. bamboo fiber has been. on micro scale. investigated as a helical. multi-layered hollow cylinder, the stiffness featu res of bamboo bast fiber were compared with those of a multifilament yarn in traditio... In thjs paper. bamboo fiber has been. on micro scale. investigated as a helical. multi-layered hollow cylinder, the stiffness featu res of bamboo bast fiber were compared with those of a multifilament yarn in traditional fiber-reinforced composite materials, Moreover. a biomimetic model of the reinforce ment of fiber-reinforced composite materials was proposed by imitating the fine structure of bamboo bast fiber. The results show that the comprehensive stiffness properties of the cornplicated fine struc ture of bamboo fiber is superior over those of traditional fiber-reinforced composites. 展开更多
关键词 CL A Biomimetic model of Fiber-reinforced Composite materials
下载PDF
Beam Element Material Model for Rotary-Straightened Steel W-Shapes
15
作者 Barry T.Rosson 《Journal of Civil Engineering and Architecture》 2021年第2期57-62,共6页
An inelastic material model that was previously developed by the author for standard W-Shapes was adapted for use to model the behavior and strength of rotary-straightened hot rolled W-Shape sections.Using a published... An inelastic material model that was previously developed by the author for standard W-Shapes was adapted for use to model the behavior and strength of rotary-straightened hot rolled W-Shape sections.Using a published residual stress model for these W-Shapes,limit load analyses were conducted using the material model in MASTAN2 and were compared with published finite element results.The material model required an adjustment to the initial yield moment conditions and residual stress ratios.Comparisons with published results indicate that these minor modifications were sufficient to provide very good modeling agreement.The previously developed material model can be used effectively to model the limit load conditions of rotary-straightened hot rolled W-Shape beams and beam-columns in steel frames.The effect of rotary-straightening W-Shapes is more significant for minor axis bending conditions and this becomes more pronounced as the floor load magnitudes increase. 展开更多
关键词 Nonlinear analysis steel buildings stiffness reduction material model
下载PDF
An Inelastic Material Model for Lateral Torsional Buckling and Biaxial Bending of Steel W-Shapes
16
作者 Barry T.Rosson 《Journal of Civil Engineering and Architecture》 2021年第12期599-603,共5页
A new material model for beam elements was developed for use as normalized tangent modulus expressions when performing 3-dimensional second-order inelastic analyses of steel I-section beams.The stiffness matrix of a 1... A new material model for beam elements was developed for use as normalized tangent modulus expressions when performing 3-dimensional second-order inelastic analyses of steel I-section beams.The stiffness matrix of a 14 degree-of-freedom beam element was updated to include the effects of yielding on St.Venant’s torsion and bimoment stiffness at the initial and terminal nodes.A validation study compared the new model’s results with those from published detailed finite element analyses and was found to be in very close agreement.A biaxial end-moment study with two different depth-to-flange-width ratios provided expected and consistent results over a range of moment conditions. 展开更多
关键词 Nonlinear analysis lateral torsional buckling biaxial bending stiffness reduction material model
下载PDF
Assessment of residual oil saturation with time-differentiated variable multiple material balance model
17
作者 Zhiyong Deng Lei Ding +2 位作者 Hengrong Zhang Wei Tan Wei Yuan 《Energy Geoscience》 2022年第1期1-7,共7页
This study aims to improve the evaluation of residual oil saturation in water flooded zones based on the material balance model(MBM)with variable multiple for injected water.We investigated the change patterns of rock... This study aims to improve the evaluation of residual oil saturation in water flooded zones based on the material balance model(MBM)with variable multiple for injected water.We investigated the change patterns of rock-electro parameters during waterflooding through the analysis of displacement tests.Our work differentiated the waterflooding into numerous displacement processes and accordingly propose an improved time-differentiated variable multiple MBM.The calculation results of the improved model are more consistent with the displacement experiment data of cores.Furthermore,the improved method was integrated into the comprehensive interpretation platform of offshore logging to analyze water flooded zones of a well in the A oilfield.As a result,the residual oil saturation calculated is in close agreement with the results of experiments on cores.Our results indicate that the time-differentiation and variable multiplier for injected water can effectively enhance the assessment accuracy of the residual oil saturation of water-flooded zones. 展开更多
关键词 material balance model Residual oil saturation Time differential Dynamic rock-electro parameters
下载PDF
Material Model Research on Rubber Vibration Isolators
18
作者 WANG Rui LI Shi-qi SONG Shao-yun 《International Journal of Plant Engineering and Management》 2007年第2期61-68,共8页
A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three pa... A viscohyperelastic constitutive model is proposed to describe the mechanical behaviour of vibration isolation rubber under broad-band vibration. This constitutive model comprises two parts: a component with three parameters to characterize the hyperelastic static properties of rubber materials, and the other component incorporating two relaxation time parameters, corresponding to high and low strain rates, respectively, to describe the dynamic response under vibration and impact loadings. Based on this proposed constitutive model, a series of experiments were performed on two types of rubber materials over a wide strain rate range. The results predicted from this model are in good agreement with the experimental data. 展开更多
关键词 viscohyperelastic constitutive model rubber vibration isolator material model
下载PDF
MATHEMATICAL MODEL OF MATERIAL PERMEATION IN MICROCIRCULATION
19
作者 ZhaoGuanglu XuMingyu 《Chinese Journal of Biomedical Engineering(English Edition)》 1995年第2期64-65,共2页
关键词 PT MATHEMATICAL model OF material PERMEATION IN MICROCIRCULATION
下载PDF
Finite Element Simulation of Flexible Roll Forming with Supplemented Material Data and the Experimental Verification 被引量:8
20
作者 YAN Yu WANG Haibo +1 位作者 LI Qiang GUAN Yanzhi 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第2期342-350,共9页
Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform d... Flexible roll forming is a promising manufacturing method for the production of variable cross section products. Considering the large plastic strain in this forming process which is much larger than that of uniform deformation phase of uniaxial tensile test, the widely adopted method of simulating the forming processes with non-supplemented material data from uniaxial tensile test will certainly lead to large error. To reduce this error, the material data is supplemented based on three constitutive models. Then a finite element model of a six passes flexible roll forming process is established based on the supplemented material data and the original material data from the uniaxial tensile test. The flexible roll forming experiment of a B pillar reinforcing plate is carried out to verify the proposed method. Final cross section shapes of the experimental and the simulated results are compared. It is shown that the simulation calculated with supplemented material data based on Swift model agrees well with the experimental results, while the simulation based on original material data could not predict the actual deformation accurately. The results indicate that this material supplement method is reliable and indispensible, and the simulation model can well reflect the real metal forming process. Detailed analysis of the distribution and history of plastic strain at different positions are performed. A new material data supplement method is proposed to tackle the problem which is ignored in other roll forming simulations, and thus the forming process simulation accuracy can be greatly improved. 展开更多
关键词 3D Flexible roll forming constitutive model material data supplementation finite element method experiment verification
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部