The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons ...The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L. , which corresponds to the level at almost 3 / 4 th of the total vertical thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L. The dominant physical mechanism of rain-formation in these summer monsoon clouds is the collision-coalescence process.展开更多
Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technol...Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technology to study how slope aspect contributes to landslide growth from Yunyang to Wushan segment in the Three Gorges Reservoir area, and the relationship between aspect and landslide growth is quantified. Through the research on 205 landslides examples, it is found that the slope contributes most whose aspect is towards south,southeast and southwest aspect contribute moderately, and other five aspects contribute little. The research result inosculates preferably with the fact. The result of this paper can provide potent gist to the construction of Three Gorges Reservoir area in future.展开更多
This study assessed the performances of the traditional temperature-index snowmelt runoff model(SRM) and an SRM model with a finer zonation based on aspect and slope(SRM + AS model) in a data-scarce mountain watershed...This study assessed the performances of the traditional temperature-index snowmelt runoff model(SRM) and an SRM model with a finer zonation based on aspect and slope(SRM + AS model) in a data-scarce mountain watershed in the Urumqi River Basin,in Northwest China.The proposed SRM + AS model was used to estimate the melt rate with the degree-day factor(DDF) through the division of watershed elevation zones based on aspect and slope.The simulation results of the SRM + AS model were compared with those of the traditional SRM model to identify the improvements of the SRM + AS model's performance with consideration of topographic features of the watershed.The results show that the performance of the SRM + AS model has improved slightly compared to that of the SRM model.The coefficients of determination increased from 0.73,0.69,and 0.79 with the SRM model to 0.76,0.76,and 0.81 with the SRM + AS model during the simulation and validation periods in 2005,2006,and 2007,respectively.The proposed SRM + AS model that considers aspect and slope can improve the accuracy of snowmelt runoff simulation compared to the traditional SRM model in mountain watersheds in arid regions by proper parameterization,careful input data selection,and data preparation.展开更多
We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can ...We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can contribute to the pressure-dependent change of the wave velocity,we order a characteristic pressure to all of them and allow a series of exponential terms in the description of the(Pand S-waves)velocity-pressure function.We estimate the parameters of the multi-exponential rock physical model in inversion procedures using laboratory measured P-and S-wave velocity data.As is known,the conventional damped least squares method gives acceptable results only when one or two individual mechanisms are assumed.Increasing the number of exponential terms leads to highly nonlinear ill-posed inverse problem.Due to this reason,we develop the spectral inversion method(SIM)in which the velocity amplitudes(the spectral lines in the characteristic pressure spectrum)are only considered as unknowns.The characteristic pressures(belonging to the velocity amplitudes)are excluded from the set of inversion unknowns,instead,they are defined in a set of fixed positions equidistantly distributed in the actual interval of the independent variable(pressure).Through this novel linear inversion method,we estimate the parameters of the multi-exponential rock physical model using laboratory measured P-and S-wave velocity data.The characteristic pressures are related to the closing pressures of cracks which are described by well-known rock mechanical relationships depending on the aspect ratio of elliptical cracks.This gives the possibility to estimate the aspect ratios in terms of the characteristic pressures.展开更多
A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration ...A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.展开更多
Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field exper...Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.展开更多
Aspect oriented software development is an emerging paradigm of software development. The notion of this technique is separation of concerns which means to implement each concern in a single object in object oriented ...Aspect oriented software development is an emerging paradigm of software development. The notion of this technique is separation of concerns which means to implement each concern in a single object in object oriented programming but still there are concerns which are distributed on different objects and are called crosscutting concerns while another form is Core concerns are the core functionality provided by the system but crosscutting concerns are the concerns like logging, performance etc. Modeling of aspect oriented software is different from the normal modeling of object-oriented or procedural language software, because aspects don’t have the independent identity or existence and they are tightly coupled to their woven context so it is difficult to model them. The one aim of our research paper is to explore the domain of Modeling of the aspect-oriented software. The goal of this research paper is to give a UML Behavioral modeling techniques in the domain of aspect oriented software development. This technique of generating UML Behavioral Model for aspects will give better understating of separations concerns.展开更多
Software Product Line Development advocates software reuse by modeling common and variable artefacts separately across members of a family of products. Aspect-Oriented Software Development aims at separation of concer...Software Product Line Development advocates software reuse by modeling common and variable artefacts separately across members of a family of products. Aspect-Oriented Software Development aims at separation of concerns with “aspects” to increase modularity, reusability, maintainability and ease of evolution. In this paper, we apply an as-pect-oriented use case modeling approach to product line system modeling. A use case specification captures stake-holders concerns as interactions between a system and its actors. We adapt our previous work with the introduction of a “variability” relationship for the expression of variabilities. This relationship is used to model variable and common behaviours across a family of products as use cases. A variability composition mechanism enables building of executa-ble behaviour models for each member of a product line family by integrating common elements with the applicable variable elements.展开更多
In recent years, mobile devices have become widespread and refined, and they have offered increased convenience in human life. For these reasons, a variety of embedded systems have been designed. Therefore, improving ...In recent years, mobile devices have become widespread and refined, and they have offered increased convenience in human life. For these reasons, a variety of embedded systems have been designed. Therefore, improving methods for developing of embedded software systematically has become an important issue. Platform-based design is one example of an embedded-system design method that can reduce the design cost via improving a design’s abstraction level. However, platform-based design lacks precise definitions for platforms and design processes. This paper provides an approach that combines the aspects and platform-based design methods for developing embedded software. The approach is built on platform-based design methodology and uses the separating of concerns (SoC) concept to define the aspects and to reduce the crosscutting concerns in embedded system modeling. For aspect issues, we use the extended UML notation with aspects to describe both the static structure and the dynamic structure of the embedded system. We used an example of a digital photo frame system to demonstrate our approach.展开更多
文摘The physical characteristics of the summer monsoon clouds were investigated. The results of a simple cloud model were compared with the aircraft cloud physical observations collected during the summer monsoon seasons of 1973, 1974, 1976 and 1981 in the Deccan Plateau region.The model predicted profiles of cloud liquid water content (LWC) are in agreement with the observed profiles. There is reasonable agreement between the model predicted cloud vertical thickness and observed rainfall.The observed cloud-drop spectra were found to be narrow and the concentration of drops with diameter > 20um is either low or absent on many occasions. In such clouds the rain-formation cannot take place under natural atmospheric conditions due to the absence of collision-coalescence process. A comparison of the model predicted and observed rainfall suggested that the precipitation efficiency in cumulus clouds of small vertical thickness could be as low as 20 per cent.The clouds forming in the Deccan Plateau region during the summer monsoon are, by and large, cumulus and strato-cumulus type. The vertical thickness of the cumulus clouds is in the range of 1.0-2.0 km. The LWC is found to be more in the region between 1.6-1.9 km A. S. L. , which corresponds to the level at almost 3 / 4 th of the total vertical thickness of the cloud and thereafter the LWC sharply decreased. Nearly 98 per cent of the tops of the low clouds in the region are below freezing level and the most frequent range of occurrence of these cloud-tops is in the range of 2.0-3.0 km A. S. L. The dominant physical mechanism of rain-formation in these summer monsoon clouds is the collision-coalescence process.
文摘Slope aspect is one of the indispensable internal factors besides lithology, relative elevation and slope degree. In this paper authors use information value model with Geo graphical Information System (GIS) technology to study how slope aspect contributes to landslide growth from Yunyang to Wushan segment in the Three Gorges Reservoir area, and the relationship between aspect and landslide growth is quantified. Through the research on 205 landslides examples, it is found that the slope contributes most whose aspect is towards south,southeast and southwest aspect contribute moderately, and other five aspects contribute little. The research result inosculates preferably with the fact. The result of this paper can provide potent gist to the construction of Three Gorges Reservoir area in future.
基金supported by the National Natural Science Foundation of China(Grant No.51069017)the International Collaborative Research Program of Xinjiang Science and Technology Commission(Grant No.20126013)
文摘This study assessed the performances of the traditional temperature-index snowmelt runoff model(SRM) and an SRM model with a finer zonation based on aspect and slope(SRM + AS model) in a data-scarce mountain watershed in the Urumqi River Basin,in Northwest China.The proposed SRM + AS model was used to estimate the melt rate with the degree-day factor(DDF) through the division of watershed elevation zones based on aspect and slope.The simulation results of the SRM + AS model were compared with those of the traditional SRM model to identify the improvements of the SRM + AS model's performance with consideration of topographic features of the watershed.The results show that the performance of the SRM + AS model has improved slightly compared to that of the SRM model.The coefficients of determination increased from 0.73,0.69,and 0.79 with the SRM model to 0.76,0.76,and 0.81 with the SRM + AS model during the simulation and validation periods in 2005,2006,and 2007,respectively.The proposed SRM + AS model that considers aspect and slope can improve the accuracy of snowmelt runoff simulation compared to the traditional SRM model in mountain watersheds in arid regions by proper parameterization,careful input data selection,and data preparation.
基金supported by the European Union,co-financed by the European Social Fund and the GINOP-2.315-2016-00010"Development of enhanced engineering methods with the aim at utilization of subterranean energy resources"project in the framework of the Szechenyi 2020 Plan,funded by the European Union,co-financed by the European Structural and Investment Funds。
文摘We present new quantitative model describing the pressure dependence of acoustic P-and S-wave velocities.Assuming that a variety of individual mechanisms or defects(such as cracks,pore collapse and grain crushing)can contribute to the pressure-dependent change of the wave velocity,we order a characteristic pressure to all of them and allow a series of exponential terms in the description of the(Pand S-waves)velocity-pressure function.We estimate the parameters of the multi-exponential rock physical model in inversion procedures using laboratory measured P-and S-wave velocity data.As is known,the conventional damped least squares method gives acceptable results only when one or two individual mechanisms are assumed.Increasing the number of exponential terms leads to highly nonlinear ill-posed inverse problem.Due to this reason,we develop the spectral inversion method(SIM)in which the velocity amplitudes(the spectral lines in the characteristic pressure spectrum)are only considered as unknowns.The characteristic pressures(belonging to the velocity amplitudes)are excluded from the set of inversion unknowns,instead,they are defined in a set of fixed positions equidistantly distributed in the actual interval of the independent variable(pressure).Through this novel linear inversion method,we estimate the parameters of the multi-exponential rock physical model using laboratory measured P-and S-wave velocity data.The characteristic pressures are related to the closing pressures of cracks which are described by well-known rock mechanical relationships depending on the aspect ratio of elliptical cracks.This gives the possibility to estimate the aspect ratios in terms of the characteristic pressures.
文摘A unified structural model for high-aspect-ratio composite wing with arbitrary cross-section is developed. Two types of lay-ups of the composite wing, namely, circumferentially uniform stiffness (CUS) configuration and circumferentially asymmetric stiffness (CAS) configuration, are investigated. The present structural modeling method is validated through ANSYS FEM software for the case of a composite box beam. Then, the case of a single-cell composite wing with NACA0012 airfoil shape is considered. To investigate the aeroelastic problem of high-aspect-ratio composite wings, the linear ONERA aerodynamic model is used to model the unsteady aerodynamic loads under the case of small angle of attack. Finally, flutter speeds of the high-aspect-ratio wing with various composite ply angles are determined by using U-g method.
基金supported by the National Natural Science Foundation of China[No.51978166]。
文摘Structural damage is significantly influenced by the various parameters of a close-in explosion.To establish a close-in blast loading model for cylindrical charges according to these parameters,a series of field experiments and a systematic numerical analysis were conducted.A high-fidelity finite element model developed using AUTODYN was first validated using blast data collected from field tests conducted in this and previous studies.A quantitative analysis was then performed to determine the influence of the charge shape,aspect ratio(length to diameter),orientation,and detonation configuration on the characteristics and distributions of the blast loading(incident peak overpressure and impulse)according to scaled distance.The results revealed that the secondary peak overpressure generated by a cylindrical charge was mainly distributed along the axial direction and was smaller than the overpressure generated by an equivalent spherical charge.The effects of charge shape on the blast loading at 45°and 67.5°in the axial plane could be neglected at scaled distances greater than 2 m/kg^(1/3);the effect of aspect ratios greater than 2 on the peak overpressure in the 90°(radial)direction could be neglected at all scaled distances;and double-end detonation increased the radial blast loading by up to 60%compared to singleend detonation.Finally,an empirical cylindrical charge blast loading model was developed considering the influences of charge aspect ratio,orientation,and detonation configuration.The results obtained in this study can serve as a reference for the design of blast tests using cylindrical charges and aid engineers in the design of blast-resistant structures.
文摘Aspect oriented software development is an emerging paradigm of software development. The notion of this technique is separation of concerns which means to implement each concern in a single object in object oriented programming but still there are concerns which are distributed on different objects and are called crosscutting concerns while another form is Core concerns are the core functionality provided by the system but crosscutting concerns are the concerns like logging, performance etc. Modeling of aspect oriented software is different from the normal modeling of object-oriented or procedural language software, because aspects don’t have the independent identity or existence and they are tightly coupled to their woven context so it is difficult to model them. The one aim of our research paper is to explore the domain of Modeling of the aspect-oriented software. The goal of this research paper is to give a UML Behavioral modeling techniques in the domain of aspect oriented software development. This technique of generating UML Behavioral Model for aspects will give better understating of separations concerns.
文摘Software Product Line Development advocates software reuse by modeling common and variable artefacts separately across members of a family of products. Aspect-Oriented Software Development aims at separation of concerns with “aspects” to increase modularity, reusability, maintainability and ease of evolution. In this paper, we apply an as-pect-oriented use case modeling approach to product line system modeling. A use case specification captures stake-holders concerns as interactions between a system and its actors. We adapt our previous work with the introduction of a “variability” relationship for the expression of variabilities. This relationship is used to model variable and common behaviours across a family of products as use cases. A variability composition mechanism enables building of executa-ble behaviour models for each member of a product line family by integrating common elements with the applicable variable elements.
文摘In recent years, mobile devices have become widespread and refined, and they have offered increased convenience in human life. For these reasons, a variety of embedded systems have been designed. Therefore, improving methods for developing of embedded software systematically has become an important issue. Platform-based design is one example of an embedded-system design method that can reduce the design cost via improving a design’s abstraction level. However, platform-based design lacks precise definitions for platforms and design processes. This paper provides an approach that combines the aspects and platform-based design methods for developing embedded software. The approach is built on platform-based design methodology and uses the separating of concerns (SoC) concept to define the aspects and to reduce the crosscutting concerns in embedded system modeling. For aspect issues, we use the extended UML notation with aspects to describe both the static structure and the dynamic structure of the embedded system. We used an example of a digital photo frame system to demonstrate our approach.