Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop...Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop models. In this study, compensated temperature was integrated into the AquaCrop model to investigate the capability of the compensatory effect to improve assessment of the promotion of maize growth and development by plastic film mulching(PM). A three-year experiment was conducted from2014 to 2016 with two maize varieties(spring and summer) and two mulching conditions(PM and non-mulching(NM)), and the AquaCrop model was employed to reproduce crop growth and yield responses to changes in NM, PM, and compensated PM. A marked difference in soil temperature between NM and PM was observed before 50 days after sowing(DAS) during three growing seasons. During sowing–emergence and emergence–tasseling, the increase in air temperature was proportional to the compensatory coefficient, with spring maize showing a higher compensatory temperature than summer maize. Simulation results for canopy cover(CC) were generally in good agreement with the measurements, whereas predictions of aboveground biomass and grain yield under PM indicated large underestimates from 60 DAS to the end of maturity. Simulations of spring maize biomass and yield showed general increase based on temperature compensation, accompanied by improvement in modeling accuracy, with RMSEs decreasing from 2.5 to 1.6 t ha^(-1)and from 4.1 t to 3.4 t ha^(-1). Improvement in biomass and yield simulation was less pronounced for summer than for spring maize, implying that crops grown during low-temperature periods would benefit more from the compensatory effect. This study demonstrated the effectiveness of the temperature compensatory effect to improve the performance of the AquaCrop model in simulating maize growth under PM practices.展开更多
In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural pra...In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.展开更多
Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can...Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and mathematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14% less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.展开更多
The evaluation process of traditional land productivity is relatively complex,and the evaluation indices and results cannot display visually.With the development of geographic information system science,there are more...The evaluation process of traditional land productivity is relatively complex,and the evaluation indices and results cannot display visually.With the development of geographic information system science,there are more and more studies on the GIS-based land productivity evaluation.GIS system can combine the evaluation model with information system software,realizing the visual display of all the evaluation factors.In this paper,with the development process of GIS-based management information system as references,the management information system for GIS-based gravel-mulched field productivity evaluation was designed and developed by combining with the SI model for gravel-mulched field productivity evaluation.The system was developed under VB environment,integrated with MapInfo,and the evaluation results could be shown visually in the system windows.展开更多
为探究秸秆覆盖处理下降水和温度变化对冬小麦产量的影响,基于秸秆覆盖长期定位试验观测数据和1999-2022年的逐日气候数据,运用APSIM(agricultural production systems simulator)模型模拟分析了未来降水(逐日降水±20%、±10%...为探究秸秆覆盖处理下降水和温度变化对冬小麦产量的影响,基于秸秆覆盖长期定位试验观测数据和1999-2022年的逐日气候数据,运用APSIM(agricultural production systems simulator)模型模拟分析了未来降水(逐日降水±20%、±10%、0)和温度(逐日温度0℃、+1℃、+2℃、+3℃、+4℃)变化对冬小麦产量的影响,并对小麦产量变异性和可持续性进行了分析。秸秆覆盖田间试验设计高量覆盖(HSM,9000 kg/hm^(2))、低量覆盖(LSM,4500kg/hm^(2))和不覆盖对照(CK)3个处理。模拟结果表明:1)APSIM模型对3种秸秆覆盖处理冬小麦产量和生物量的模拟精度较高,决定系数R~2在0.75~0.92之间,归一化均方根误差在11.07%~14.65%之间,模型一致性指标在0.84~0.91之间;2)降水和温度变化对冬小麦产量均有显著影响。当温度不变时,降水增加会提高小麦产量,处理间的增产效应为HSM>LSM>CK;而当降水不变时,温度升高会导致产量下降,减产效应为LSM>HSM>CK;降水和温度协同作用下同样会导致小麦减产,处理间的减产效应为CK>LSM>HSM。3)与其他气候情景模拟结果相比,降水减少20%和增温2~3℃情景下冬小麦产量具有最大的变异系数和最小的可持续指数,作物生产风险较高。4)与CK和LSM相比,HSM处理在不同的气候变化情景下平均具有最高的产量和可持续性指数以及最低的变异系数。因此,未来气候变化背景下,采用高量覆盖管理措施更有利于黄土高原地区冬小麦生产。展开更多
In sub-humid Northeast China,plastic film mulching(PFM)is increasingly used with drip irrigation system in maize(Zea mays L.)to cope with seasonal droughts and low temperatures during seedling stage.Although there wer...In sub-humid Northeast China,plastic film mulching(PFM)is increasingly used with drip irrigation system in maize(Zea mays L.)to cope with seasonal droughts and low temperatures during seedling stage.Although there were several studies showing the benefits of PFM on maize production in the region,quantification of the effects of PFM in sub-humid Northeast China are still lacking.Hybrid-Maize model has a special version that can not only simulate the effects of PFM on reduction of soil evaporation and rise of topsoil temperature,but also simulate the effects of PFM on crop development and other physiological processes.This paper reports how to verify the Hybrid-Maize model against observations and then applying the model to quantify effects of PFM on grain yield and water use efficiency(WUE)under irrigated scenarios.The Hybrid-Maize model was added the heating effects of PFM on rising surface-soil temperature and promoting subsequent crop development by establishing equations between surface-soil temperature and air temperature before V6 stage.A 3-year field experiment including maize growth and yield data measured at a drip-irrigated field in Heilongjiang Province was used to serve the model calibration.The simulated results indicated that the Hybrid-Maize model performed well in simulation of seasonal soil water storage and in-season aboveground dry matter in three years,but overestimated the leaf area index(LAI)for both treatments and underestimated the final aboveground dry matter at maturity for mulched treatments.Although the Hybrid-Maize model overestimated the grain yield and WUE,it did still reflect the effects of PFM on increasing grain yield and WUE during the three growing seasons.The average simulated grain yield and WUE for mulched treatments were 8%and 13%greater compared to non-mulched treatments using 30 years weather data,which were in agreement with observations that average grain yield and WUE was 11%and 14%increased by PFM,respectively.For evapotranspiration(ET),the average simulated ET for mulched treatments was 22 mm less than non-mulched treatments mainly due to less soil evaporation.For simulated irrigation requirements,at most 69 mm of irrigation water could be saved by PFM.In conclusion,PFM with drip irrigation could improve irrigated maize production in sub-humid Northeast China.展开更多
The soil water status was investigated under soil surface mulching techniques and two drip line depths from the soil surface(DL).These techniques were black plastic film(BPF),palm tree waste(PTW),and no mulching(NM)as...The soil water status was investigated under soil surface mulching techniques and two drip line depths from the soil surface(DL).These techniques were black plastic film(BPF),palm tree waste(PTW),and no mulching(NM)as the control treatment.The DL were 15 cm and 25 cm,with surface drip irrigation used as the control.The results indicated that both the BPF and PTW mulching enhanced the soil water retention capacity and there was about 6%water saving in subsurface drip irrigation,compared with NM.Furthermore,the water savings at a DL of 25 cm were lower(15-20 mm)than those at a DL of 15 cm(19-24 mm),whereas surface drip irrigation consumed more water.The distribution of soil water content(θv)for BPF and PTW were more useful than for NM.Hence,mulching the soil with PTW is recommended due to the lower costs and using a DL of 15 cm.Theθv values were derived using multiple linear regression(MLR)and multiple nonlinear regression(MNLR)models.Multiple regression analysis revealed the superiority of the MLR over the MNLR model,which in the training and testing processes had coefficients of correlation of 0.86 and 0.88,root mean square errors of 0.37 and 0.35,and indices of agreement of 0.99 and 0.93,respectively,over the MNLR model.Moreover,DL and spacing from the drip line had a significant effect on the estimation of θv.展开更多
基金supported by the National Natural Science Foundation of China (51909228 and 52209071)the “High-level Talents Support Program” of Yangzhou University+2 种基金“Chunhui Plan” Cooperative Scientific Research Project of Ministry of Education of China (HZKY20220115)the China Postdoctoral Science Foundation (2020M671623)the “Blue Project” of Yangzhou University。
文摘Temperature compensatory effect, which quantifies the increase in cumulative air temperature from soil temperature increase caused by mulching, provides an effective method for incorporating soil temperature into crop models. In this study, compensated temperature was integrated into the AquaCrop model to investigate the capability of the compensatory effect to improve assessment of the promotion of maize growth and development by plastic film mulching(PM). A three-year experiment was conducted from2014 to 2016 with two maize varieties(spring and summer) and two mulching conditions(PM and non-mulching(NM)), and the AquaCrop model was employed to reproduce crop growth and yield responses to changes in NM, PM, and compensated PM. A marked difference in soil temperature between NM and PM was observed before 50 days after sowing(DAS) during three growing seasons. During sowing–emergence and emergence–tasseling, the increase in air temperature was proportional to the compensatory coefficient, with spring maize showing a higher compensatory temperature than summer maize. Simulation results for canopy cover(CC) were generally in good agreement with the measurements, whereas predictions of aboveground biomass and grain yield under PM indicated large underestimates from 60 DAS to the end of maturity. Simulations of spring maize biomass and yield showed general increase based on temperature compensation, accompanied by improvement in modeling accuracy, with RMSEs decreasing from 2.5 to 1.6 t ha^(-1)and from 4.1 t to 3.4 t ha^(-1). Improvement in biomass and yield simulation was less pronounced for summer than for spring maize, implying that crops grown during low-temperature periods would benefit more from the compensatory effect. This study demonstrated the effectiveness of the temperature compensatory effect to improve the performance of the AquaCrop model in simulating maize growth under PM practices.
基金supportedby the National Natural Science Foundation of China(41771035,42071047)。
文摘In order to cope with drought and water shortages,the working people in the arid areas of Northwest China have developed a drought-resistant planting method,namely,gravel-sand mulching,after long-term agricultural practices.To understand the effects of gravel-sand mulching on soil water evaporation,we selected Baifeng peach(Amygdalus persica L.)orchards in Northwest China as the experimental field in 2021.Based on continuously collected soil water stable isotopes data,we evaluated the soil evaporation loss rate in a gravel-sand mulching environment using the line-conditioned excess(lc-excess)coupled Rayleigh fractionation model and Craig-Gordon model.The results show that the average soil water content in the plots with gravel-sand mulching is 1.86%higher than that without gravel-sand mulching.The monthly variation of the soil water content is smaller in the plots with gravel-sand mulching than that without gravel-sand mulching.Moreover,the average lc-excess value in the plots without gravel-sand mulching is smaller.In addition,the soil evaporation loss rate in the plots with gravel-sand mulching is lower than that in the plots without gravel-sand mulching.The lc-excess value was negative for both the plots with and without gravel-sand mulching,and it has good correlation with relative humidity,average temperature,input water content,and soil water content.The effect of gravel-sand mulching on soil evaporation is most prominent in August.Compared with the evaporation data of similar environments in the literature,the lc-excess coupled Rayleigh fractionation model is better.Stable isotopes evidence shows that gravel-sand mulching can effectively reduce soil water evaporation,which provides a theoretical basis for agricultural water management and optimization of water-saving methods in arid areas.
基金supported by National Natural Science Foundation of China (NO. 41401036)China Postdoctoral Science Foundation (NO. 2015T81070, 2014M560818)West Light Foundation of the Chinese Academy of Sciences
文摘Furrow irrigation with film-mulched agricultural beds is being promoted in the arid region of northwest China because it improves water utilization. Two-dimensional infiltration patterns under film-mulched furrows can provide guidelines and criteria for irrigation design and operation. Our objective was to investigate soil water dynamics during ponding irrigation infiltration of mulched furrows in a cross-sectional ridge-furrow configuration, using laboratory experiments and mathematical simulations. Six experimental treatments, with two soil types (silt loam and sandy loam), were investigated to monitor the wetting patterns and soil water distribution in a cuboid soil chamber. Irrigation of mulched furrows clearly increased water lateral infiltration on ridge shoulders and ridges, due to enhancement of capillary driving force. Increases to both initial soil water content (SWC) and irrigation water level resulted in increased wetted soil volume. Empirical regression equations accurately estimated the wetted lateral distance (Rl) and downward distance (Rd) with elapsed time in a variably wetted soil medium. Optimization of model parameters followed by the Inverse approach resulted in satisfactory agreement between observed and predicted cumulative infiltration and SWC. On the basis of model calibration, HYDRUS-2D model can accurately simulate two-dimensional soil water dynamics under irrigation of mulched furrows. There were significant differences in wetting patterns between unmulched and mulched furrow irrigation using HYDRUS-2D simulation. The Rd under the mulched furrows was 32.14% less than the unmulched furrows. Therefore, film-mulched furrows are recommended in a furrow irrigation system.
基金Supported by National Key Technology R&D Program(2007BAD54B01)the Scientific Research Project of Yinchuan University of Energy(2014KYZ05)
文摘The evaluation process of traditional land productivity is relatively complex,and the evaluation indices and results cannot display visually.With the development of geographic information system science,there are more and more studies on the GIS-based land productivity evaluation.GIS system can combine the evaluation model with information system software,realizing the visual display of all the evaluation factors.In this paper,with the development process of GIS-based management information system as references,the management information system for GIS-based gravel-mulched field productivity evaluation was designed and developed by combining with the SI model for gravel-mulched field productivity evaluation.The system was developed under VB environment,integrated with MapInfo,and the evaluation results could be shown visually in the system windows.
文摘为探究秸秆覆盖处理下降水和温度变化对冬小麦产量的影响,基于秸秆覆盖长期定位试验观测数据和1999-2022年的逐日气候数据,运用APSIM(agricultural production systems simulator)模型模拟分析了未来降水(逐日降水±20%、±10%、0)和温度(逐日温度0℃、+1℃、+2℃、+3℃、+4℃)变化对冬小麦产量的影响,并对小麦产量变异性和可持续性进行了分析。秸秆覆盖田间试验设计高量覆盖(HSM,9000 kg/hm^(2))、低量覆盖(LSM,4500kg/hm^(2))和不覆盖对照(CK)3个处理。模拟结果表明:1)APSIM模型对3种秸秆覆盖处理冬小麦产量和生物量的模拟精度较高,决定系数R~2在0.75~0.92之间,归一化均方根误差在11.07%~14.65%之间,模型一致性指标在0.84~0.91之间;2)降水和温度变化对冬小麦产量均有显著影响。当温度不变时,降水增加会提高小麦产量,处理间的增产效应为HSM>LSM>CK;而当降水不变时,温度升高会导致产量下降,减产效应为LSM>HSM>CK;降水和温度协同作用下同样会导致小麦减产,处理间的减产效应为CK>LSM>HSM。3)与其他气候情景模拟结果相比,降水减少20%和增温2~3℃情景下冬小麦产量具有最大的变异系数和最小的可持续指数,作物生产风险较高。4)与CK和LSM相比,HSM处理在不同的气候变化情景下平均具有最高的产量和可持续性指数以及最低的变异系数。因此,未来气候变化背景下,采用高量覆盖管理措施更有利于黄土高原地区冬小麦生产。
基金supported by the National Natural Science Foundation of China(Grant No.51479211)Ministry of Science and Technology of the People’s Republic of China(Grant No.2014BAD12B05)Chinese Scholarship Council(Grant No.201506350059).
文摘In sub-humid Northeast China,plastic film mulching(PFM)is increasingly used with drip irrigation system in maize(Zea mays L.)to cope with seasonal droughts and low temperatures during seedling stage.Although there were several studies showing the benefits of PFM on maize production in the region,quantification of the effects of PFM in sub-humid Northeast China are still lacking.Hybrid-Maize model has a special version that can not only simulate the effects of PFM on reduction of soil evaporation and rise of topsoil temperature,but also simulate the effects of PFM on crop development and other physiological processes.This paper reports how to verify the Hybrid-Maize model against observations and then applying the model to quantify effects of PFM on grain yield and water use efficiency(WUE)under irrigated scenarios.The Hybrid-Maize model was added the heating effects of PFM on rising surface-soil temperature and promoting subsequent crop development by establishing equations between surface-soil temperature and air temperature before V6 stage.A 3-year field experiment including maize growth and yield data measured at a drip-irrigated field in Heilongjiang Province was used to serve the model calibration.The simulated results indicated that the Hybrid-Maize model performed well in simulation of seasonal soil water storage and in-season aboveground dry matter in three years,but overestimated the leaf area index(LAI)for both treatments and underestimated the final aboveground dry matter at maturity for mulched treatments.Although the Hybrid-Maize model overestimated the grain yield and WUE,it did still reflect the effects of PFM on increasing grain yield and WUE during the three growing seasons.The average simulated grain yield and WUE for mulched treatments were 8%and 13%greater compared to non-mulched treatments using 30 years weather data,which were in agreement with observations that average grain yield and WUE was 11%and 14%increased by PFM,respectively.For evapotranspiration(ET),the average simulated ET for mulched treatments was 22 mm less than non-mulched treatments mainly due to less soil evaporation.For simulated irrigation requirements,at most 69 mm of irrigation water could be saved by PFM.In conclusion,PFM with drip irrigation could improve irrigated maize production in sub-humid Northeast China.
基金The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group(No.RG-1440-022).
文摘The soil water status was investigated under soil surface mulching techniques and two drip line depths from the soil surface(DL).These techniques were black plastic film(BPF),palm tree waste(PTW),and no mulching(NM)as the control treatment.The DL were 15 cm and 25 cm,with surface drip irrigation used as the control.The results indicated that both the BPF and PTW mulching enhanced the soil water retention capacity and there was about 6%water saving in subsurface drip irrigation,compared with NM.Furthermore,the water savings at a DL of 25 cm were lower(15-20 mm)than those at a DL of 15 cm(19-24 mm),whereas surface drip irrigation consumed more water.The distribution of soil water content(θv)for BPF and PTW were more useful than for NM.Hence,mulching the soil with PTW is recommended due to the lower costs and using a DL of 15 cm.Theθv values were derived using multiple linear regression(MLR)and multiple nonlinear regression(MNLR)models.Multiple regression analysis revealed the superiority of the MLR over the MNLR model,which in the training and testing processes had coefficients of correlation of 0.86 and 0.88,root mean square errors of 0.37 and 0.35,and indices of agreement of 0.99 and 0.93,respectively,over the MNLR model.Moreover,DL and spacing from the drip line had a significant effect on the estimation of θv.