This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemi...This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.展开更多
This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative ...This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.展开更多
Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as s...Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.展开更多
Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The glob...Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The global effect of FMD is most felt where livestock rearing forms an important source of income.It is therefore important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.This work intends to address these dynamics by including the efficacy of active migrant animals transporting the disease from one area to another in a fuzzy mathematical modeling framework.Historical models of epidemics are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed in FMD.Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model;this makes the model more of a reality regarding disease transmission.A time lag,in this case,denotes the incubation period and other time-related factors affecting the spread of FMD and,therefore,is added to the current model for FMD.To that purpose,the analysis of steady states and the basic reproduction number are performed and,in addition,the stability checks are conveyed in the fuzzy environment.For the numerical solution of the model,we derive the Forward Euler Method and the fuzzy delayed non-standard finite difference(FDNSFD)method.Analytical studies of the FDNSFD scheme are performed for convergence,non-negativity,boundedness,and consistency analysis of the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous dynamics of FMD transmission over time.In the following simulation study,we show that the FDNSFD method preserves the characteristics of the constant model and still works if relatively large time steps are employed;this is a bonus over the normal finite difference technique.The study shows how valuable it is to adopt fuzzy theory and time delays when simulating the transmission of the epidemic,especially for such diseases as FMD where uncertainty and migration have a defining role in transmission.This approach gives more sound and flexible grounds for analyzing and controlling the outbreak of FMD in various situations.展开更多
This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel...This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.展开更多
Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common under...Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.展开更多
In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible t...In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.展开更多
To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure ...To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.展开更多
A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership fu...A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.展开更多
This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first ...This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...展开更多
Starting from the utilization and protection of local knowledge, with the performance prism as the framework, the evaluation index system of tourist satisfaction degree was established. The weight was determined by us...Starting from the utilization and protection of local knowledge, with the performance prism as the framework, the evaluation index system of tourist satisfaction degree was established. The weight was determined by using AHP method. Finally, the investigating result was judged with fuzzy comprehensive evaluation method, the evaluation model of tourist satisfaction degree in western tourist area was built, and the case study was carried out. With Lijiang in Yunnan Province as example, according to AHP method, five dimensions weight of the performance prism, various KPI weight and consistency were obtained, fuzzy evaluation on tourist satisfaction degree was conducted. The results showed that the overall was satisfactory, but there were still some problems. Aiming at the utilization and protection of local knowledge, some corresponding countermeasures were put forward which will benefit for further development of tourism in Lijiang of Yunnan Province.展开更多
Helicopter mathematical model mainly depends on design helicopter control system, flight simulator, and real time control simulation system. But it is difficult to establish a helicopter flight dynamics mathematical ...Helicopter mathematical model mainly depends on design helicopter control system, flight simulator, and real time control simulation system. But it is difficult to establish a helicopter flight dynamics mathematical model that has features such as rapidness, reliability and precision, because there is no unique and precise expression to some sophisticated phenomenon of helicopter. In this paper a fuzzy helicopter flight model is constructed based on the flight experimental data. The fuzzy model, which is identified by fuzzy inference, has characteristics of computed rapidness and high precision. In order to guarantee the precision of the identified fuzzy model, a new method is adopted to handle the conflict fuzzy rules. Additionally, using fuzzy clustering technology can effectively reduce the number of rules of fuzzy model, namely, the order of the fuzzy model. The simulation results indicate that the method of this paper is effective and feasible.展开更多
In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the ...In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.展开更多
Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competiti...Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.展开更多
A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and th...A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.展开更多
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con...Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.展开更多
In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of f...In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical hyperchaotic systems exactly. The benefit of employing the T-S fuzzy models lies in mathematical simplicity of analysis. Based on the T-S fuzzy hyperchaotic models, two fuzzy controllers arc designed via parallel distributed compensation (PDC) and exact linearization (EL) techniques to synchronize two identical hyperchaotic systems with uncertain parameters and two different hyperchaotic systems, respectively. The sufficient conditions for the robust synchronization of two identical hyperchaotic systems with uncertain parameters and the asymptotic synchronization of two different hyperchaotic systems are derived by applying the Lyapunov stability theory. This method is a universal one of synchronizing two identical or different hyperchaotic systems. Numerical examples are given to demonstrate the validity of the proposed fuzzy model and hyperchaotic synchronization scheme.展开更多
The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to mode...The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to model the C41SR architecture. The paper presents an approach to modeling the capability requirements with the fuzzy unified modeling language (UML) and building domain ontologies with fuzzy description logic (DL). The UML modeling constructs are extended according to the meta model of Depart- ment of Defense Architecture Framework to improve their domain applicability, the fuzzy modeling mechanism is introduced to model the fuzzy efficiency features of capabilities, and the capability requirement models are converted into ontologies formalized in fuzzy DL so that the model consistency and reasonability can be checked with a DL reasoning system. Finally, a case study of C41SR capability requirements model checking is provided to demonstrate the availability and applicability of the method.展开更多
Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustaina...Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning.展开更多
In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) f...In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.展开更多
基金the support of Prince Sultan University for paying the article processing charges(APC)of this publication.
文摘This work aimed to construct an epidemic model with fuzzy parameters.Since the classical epidemic model doesnot elaborate on the successful interaction of susceptible and infective people,the constructed fuzzy epidemicmodel discusses the more detailed versions of the interactions between infective and susceptible people.Thenext-generation matrix approach is employed to find the reproduction number of a deterministic model.Thesensitivity analysis and local stability analysis of the systemare also provided.For solving the fuzzy epidemic model,a numerical scheme is constructed which consists of three time levels.The numerical scheme has an advantage overthe existing forward Euler scheme for determining the conditions of getting the positive solution.The establishedscheme also has an advantage over existing non-standard finite difference methods in terms of order of accuracy.The stability of the scheme for the considered fuzzy model is also provided.From the plotted results,it can beobserved that susceptible people decay by rising interaction parameters.
基金supported by the National Natural Science Foundation of China (62073303,61673356)Hubei Provincial Natural Science Foundation of China (2015CFA010)the 111 Project(B17040)。
文摘This article focuses on dynamic event-triggered mechanism(DETM)-based model predictive control(MPC) for T-S fuzzy systems.A hybrid dynamic variables-dependent DETM is carefully devised,which includes a multiplicative dynamic variable and an additive dynamic variable.The addressed DETM-based fuzzy MPC issue is described as a “min-max” optimization problem(OP).To facilitate the co-design of the MPC controller and the weighting matrix of the DETM,an auxiliary OP is proposed based on a new Lyapunov function and a new robust positive invariant(RPI) set that contain the membership functions and the hybrid dynamic variables.A dynamic event-triggered fuzzy MPC algorithm is developed accordingly,whose recursive feasibility is analysed by employing the RPI set.With the designed controller,the involved fuzzy system is ensured to be asymptotically stable.Two examples show that the new DETM and DETM-based MPC algorithm have the advantages of reducing resource consumption while yielding the anticipated performance.
基金The work is partially supported by Natural Science Foundation of Ningxia(Grant No.AAC03300)National Natural Science Foundation of China(Grant No.61962001)Graduate Innovation Project of North Minzu University(Grant No.YCX23152).
文摘Model checking is an automated formal verification method to verify whether epistemic multi-agent systems adhere to property specifications.Although there is an extensive literature on qualitative properties such as safety and liveness,there is still a lack of quantitative and uncertain property verifications for these systems.In uncertain environments,agents must make judicious decisions based on subjective epistemic.To verify epistemic and measurable properties in multi-agent systems,this paper extends fuzzy computation tree logic by introducing epistemic modalities and proposing a new Fuzzy Computation Tree Logic of Knowledge(FCTLK).We represent fuzzy multi-agent systems as distributed knowledge bases with fuzzy epistemic interpreted systems.In addition,we provide a transformation algorithm from fuzzy epistemic interpreted systems to fuzzy Kripke structures,as well as transformation rules from FCTLK formulas to Fuzzy Computation Tree Logic(FCTL)formulas.Accordingly,we transform the FCTLK model checking problem into the FCTL model checking.This enables the verification of FCTLK formulas by using the fuzzy model checking algorithm of FCTL without additional computational overheads.Finally,we present correctness proofs and complexity analyses of the proposed algorithms.Additionally,we further illustrate the practical application of our approach through an example of a train control system.
文摘Foot-and-mouth disease(FMD)is a viral disease that affects cloven-hoofed animals including cattle,pigs,and sheep,hence causing export bans among others,causing high economic losses due to reduced productivity.The global effect of FMD is most felt where livestock rearing forms an important source of income.It is therefore important to understand the modes of transmission of FMD to control its spread and prevent its occurrence.This work intends to address these dynamics by including the efficacy of active migrant animals transporting the disease from one area to another in a fuzzy mathematical modeling framework.Historical models of epidemics are determinable with a set of deterministic parameters and this does not reflect on real-life scenarios as observed in FMD.Fuzzy theory is used in this model as it permits the inclusion of uncertainties in the model;this makes the model more of a reality regarding disease transmission.A time lag,in this case,denotes the incubation period and other time-related factors affecting the spread of FMD and,therefore,is added to the current model for FMD.To that purpose,the analysis of steady states and the basic reproduction number are performed and,in addition,the stability checks are conveyed in the fuzzy environment.For the numerical solution of the model,we derive the Forward Euler Method and the fuzzy delayed non-standard finite difference(FDNSFD)method.Analytical studies of the FDNSFD scheme are performed for convergence,non-negativity,boundedness,and consistency analysis of the numerical projection to guarantee that the numerical model is an accurate discretization of the continuous dynamics of FMD transmission over time.In the following simulation study,we show that the FDNSFD method preserves the characteristics of the constant model and still works if relatively large time steps are employed;this is a bonus over the normal finite difference technique.The study shows how valuable it is to adopt fuzzy theory and time delays when simulating the transmission of the epidemic,especially for such diseases as FMD where uncertainty and migration have a defining role in transmission.This approach gives more sound and flexible grounds for analyzing and controlling the outbreak of FMD in various situations.
文摘This study aims to establish an expert consensus and enhance the efficacy of decision-making processes by integrating Spherical Fuzzy Sets(SFSs)and Z-Numbers(SFZs).A novel group expert consensus technique,the PHImodel,is developed to address the inherent limitations of both SFSs and the traditional Delphi technique,particularly in uncertain,complex scenarios.In such contexts,the accuracy of expert knowledge and the confidence in their judgments are pivotal considerations.This study provides the fundamental operational principles and aggregation operators associated with SFSs and Z-numbers,encompassing weighted geometric and arithmetic operators alongside fully developed operators tailored for SFZs numbers.Subsequently,a case study and comparative analysis are conducted to illustrate the practicality and effectiveness of the proposed operators and methodologies.Integrating the PHI model with SFZs numbers represents a significant advancement in decision-making frameworks reliant on expert input.Further,this combination serves as a comprehensive tool for decision-makers,enabling them to achieve heightened levels of consensus while concurrently assessing the reliability of expert contributions.The case study results demonstrate the PHI model’s utility in resolving complex decision-making scenarios,showcasing its ability to improve consensus-building processes and enhance decision outcomes.Additionally,the comparative analysis highlights the superiority of the integrated approach over traditional methodologies,underscoring its potential to revolutionize decision-making practices in uncertain environments.
文摘Diabetes mellitus is associated with foot ulcers,which frequently pave the way to lower-extremity amputation.Neuropathy,trauma,deformity,high plantar pressures,and peripheral vascular disease are the most common underlying causes.Around 15%of diabetic patients are affected by diabetic foot ulcer in their lifetime.64 million people are affected by diabetics in India and 40000 amputations are done every year.Foot ulcers are evaluated and classified in a systematic and thorough manner to assist in determining the best course of therapy.This paper proposes a novel model which predicts the threat of diabetic foot ulcer using independent agents for various input values and a combination of fuzzy expert systems.The proposed model uses a classification system to distinguish between each fuzzy framework and its parameters.Based on the severity levels necessary prevention,treatment,and medication are recommended.Combining the results of all the fuzzy frameworks derived from its constituent parameters,a risk-specific medication is recommended.The work also has higher accuracy when compared to other related models.
基金supported by the National Science and Technology Council under grants NSTC 112-2221-E-320-002the Buddhist Tzu Chi Medical Foundation in Taiwan under Grant TCMMP 112-02-02.
文摘In many Eastern and Western countries,falling birth rates have led to the gradual aging of society.Older adults are often left alone at home or live in a long-term care center,which results in them being susceptible to unsafe events(such as falls)that can have disastrous consequences.However,automatically detecting falls fromvideo data is challenging,and automatic fall detection methods usually require large volumes of training data,which can be difficult to acquire.To address this problem,video kinematic data can be used as training data,thereby avoiding the requirement of creating a large fall data set.This study integrated an improved particle swarm optimization method into a double interactively recurrent fuzzy cerebellar model articulation controller model to develop a costeffective and accurate fall detection system.First,it obtained an optical flow(OF)trajectory diagram from image sequences by using the OF method,and it solved problems related to focal length and object offset by employing the discrete Fourier transform(DFT)algorithm.Second,this study developed the D-IRFCMAC model,which combines spatial and temporal(recurrent)information.Third,it designed an IPSO(Improved Particle Swarm Optimization)algorithm that effectively strengthens the exploratory capabilities of the proposed D-IRFCMAC(Double-Interactively Recurrent Fuzzy Cerebellar Model Articulation Controller)model in the global search space.The proposed approach outperforms existing state-of-the-art methods in terms of action recognition accuracy on the UR-Fall,UP-Fall,and PRECIS HAR data sets.The UCF11 dataset had an average accuracy of 93.13%,whereas the UCF101 dataset had an average accuracy of 92.19%.The UR-Fall dataset had an accuracy of 100%,the UP-Fall dataset had an accuracy of 99.25%,and the PRECIS HAR dataset had an accuracy of 99.07%.
基金Supported by the Shanxi Natural Science Foundation under contract number 20041070 and Natural Science Foundation of north u-niversity of China .
文摘To implement a quantificational evaluation for mechanical kinematic scheme more effectively,a multi-level and multi-objective evaluation model is presented using neural network and fuzzy theory. Firstly,the structure of evaluation model is constructed according to evaluation indicator system. Then evaluation samples are generated and provided to train this model. Thus it can reflect the relation between attributive value and evaluation result,as well as the weight of evaluation indicator. Once evaluation indicators of each candidate are fuzzily quantified and fed into the trained network model,the corresponding evaluation result is outputted and the best alternative can be selected. Under this model,expert knowledge can be effectively acquired and expressed,and the quantificational evaluation can be implemented for kinematic scheme with multi-level evaluation indicator system. Several key problems on this model are discussed and an illustration has demonstrated that this model is feasible and can be regarded as a new idea for solving kinematic scheme evaluation.
基金The National Natural Science Foundation of China(No.51106025,51106027,51036002)Specialized Research Fund for the Doctoral Program of Higher Education(No.20130092110061)the Youth Foundation of Nanjing Institute of Technology(No.QKJA201303)
文摘A fuzzy observations-based radial basis function neural network (FORBFNN) is presented for modeling nonlinear systems in which the observations of response are imprecise but can be represented as fuzzy membership functions. In the FORBFNN model, the weight coefficients of nodes in the hidden layer are identified by using the fuzzy expectation-maximization ( EM ) algorithm, whereas the optimal number of these nodes as well as the centers and widths of radial basis functions are automatically constructed by using a data-driven method. Namely, the method starts with an initial node, and then a new node is added in a hidden layer according to some rules. This procedure is not terminated until the model meets the preset requirements. The method considers both the accuracy and complexity of the model. Numerical simulation results show that the modeling method is effective, and the established model has high prediction accuracy.
文摘This paper presents a fuzzy logic approach to efficiently perform unsupervised character classification for improvement in robustness, correctness and speed of a character recognition system. The characters are first split into eight typographical categories. The classification scheme uses pattern matching to classify the characters in each category into a set of fuzzy prototypes based on a nonlinear weighted similarity function. The fuzzy unsupervised character classification, which is natural in the repre...
基金Supported by 2008 National Social Science Fund (08BMZ042)~~
文摘Starting from the utilization and protection of local knowledge, with the performance prism as the framework, the evaluation index system of tourist satisfaction degree was established. The weight was determined by using AHP method. Finally, the investigating result was judged with fuzzy comprehensive evaluation method, the evaluation model of tourist satisfaction degree in western tourist area was built, and the case study was carried out. With Lijiang in Yunnan Province as example, according to AHP method, five dimensions weight of the performance prism, various KPI weight and consistency were obtained, fuzzy evaluation on tourist satisfaction degree was conducted. The results showed that the overall was satisfactory, but there were still some problems. Aiming at the utilization and protection of local knowledge, some corresponding countermeasures were put forward which will benefit for further development of tourism in Lijiang of Yunnan Province.
文摘Helicopter mathematical model mainly depends on design helicopter control system, flight simulator, and real time control simulation system. But it is difficult to establish a helicopter flight dynamics mathematical model that has features such as rapidness, reliability and precision, because there is no unique and precise expression to some sophisticated phenomenon of helicopter. In this paper a fuzzy helicopter flight model is constructed based on the flight experimental data. The fuzzy model, which is identified by fuzzy inference, has characteristics of computed rapidness and high precision. In order to guarantee the precision of the identified fuzzy model, a new method is adopted to handle the conflict fuzzy rules. Additionally, using fuzzy clustering technology can effectively reduce the number of rules of fuzzy model, namely, the order of the fuzzy model. The simulation results indicate that the method of this paper is effective and feasible.
基金The National Natural Science Foundation of China(No.60474049,60835001)Specialized Research Fund for Doctoral Program of Higher Education(No.20090092120027)
文摘In order to overcome data-quantization, networked-induced delay, network packet dropouts and wrong sequences in the nonlinear networked control system, a novel nonlinear networked control system model is built by the T-S fuzzy method. Two time-varying quantizers are added in the model. The key analysis steps in the method are to construct an improved interval-delay-dependent Lyapunov functional and to introduce the free-weighting matrix. By making use of the parallel distributed compensation technology and the convexity of the matrix function, the improved criteria of the stabilization and stability are obtained. Simulation experiments show that the parameters of the controllers and quantizers satisfying a certain performance can be obtained by solving a set of LMIs. The application of the nonlinear mass-spring system is provided to show that the proposed method is effective.
文摘Through modifying the CPN model, a kind of multivariable fuzzy model is put forward, and the matching fuzzy multistep predictive control algorithm is deduced based on the model. The modified model works in a competitive output manner which results in its local representation property. While studying on line, only a few parameters need to be regulated. So the model has the merits of fast learning and on line self organizing modeling. The control algorithm is simple, adaptive and useful in multivariable and time delay systems. Applying the algorithm in a paper making system, simulation shows its good effect.
基金This Project was supported by the National Natural Science Foundation of China (60374037 and 60574036)the Opening Project Foundation of National Lab of Industrial Control Technology (0708008).
文摘A constrained generalized predictive control (GPC) algorithm based on the T-S fuzzy model is presented for the nonlinear system. First, a Takagi-Sugeno (T-S) fuzzy model based on the fuzzy cluster algorithm and the orthogonalleast square method is constructed to approach the nonlinear system. Since its consequence is linear, it can divide the nonlinear system into a number of linear or nearly linear subsystems. For this T-S fuzzy model, a GPC algorithm with input constraints is presented. This strategy takes into account all the constraints of the control signal and its increment, and does not require the calculation of the Diophantine equations. So it needs only a small computer memory and the computational speed is high. The simulation results show a good performance for the nonlinear systems.
基金Supported by National Natural Science Foundation of China(Grant No.11372036)
文摘Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 60534010, 60572070, 60774048 and 60728307)the Program for Changjiang Scholars and Innovative Research Groups of China (Grant No 60521003)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No 20070145015)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)
文摘In this paper, a Takagi Sugeno (T-S) fuzzy model-based method is proposed to deal with the problem of synchronization of two identical or different hyperchaotic systems. The T S fuzzy models with a small number of fuzzy IF-THEN rules are employed to represent many typical hyperchaotic systems exactly. The benefit of employing the T-S fuzzy models lies in mathematical simplicity of analysis. Based on the T-S fuzzy hyperchaotic models, two fuzzy controllers arc designed via parallel distributed compensation (PDC) and exact linearization (EL) techniques to synchronize two identical hyperchaotic systems with uncertain parameters and two different hyperchaotic systems, respectively. The sufficient conditions for the robust synchronization of two identical hyperchaotic systems with uncertain parameters and the asymptotic synchronization of two different hyperchaotic systems are derived by applying the Lyapunov stability theory. This method is a universal one of synchronizing two identical or different hyperchaotic systems. Numerical examples are given to demonstrate the validity of the proposed fuzzy model and hyperchaotic synchronization scheme.
文摘The capability requirements of the command, control, communication, computing, intelligence, surveillance, reconnaissance (C41SR) systems are full of uncertain and vague information, which makes it difficult to model the C41SR architecture. The paper presents an approach to modeling the capability requirements with the fuzzy unified modeling language (UML) and building domain ontologies with fuzzy description logic (DL). The UML modeling constructs are extended according to the meta model of Depart- ment of Defense Architecture Framework to improve their domain applicability, the fuzzy modeling mechanism is introduced to model the fuzzy efficiency features of capabilities, and the capability requirement models are converted into ontologies formalized in fuzzy DL so that the model consistency and reasonability can be checked with a DL reasoning system. Finally, a case study of C41SR capability requirements model checking is provided to demonstrate the availability and applicability of the method.
基金Undertheauspicesof China Postdoctoral Science Foundation (No.2004035175), and the Natural Science Founda-tionof Anhui Provincial Bureau of Education (No.2003KJ043ZD)
文摘Ecological security is a vital problem that people all over the world today have to face and solve, and the situation of ecological security is getting more and more severe and has begun to impede heavily the sustainable development of social economy. Ecological environment pre-warning has become a hotspot for the modern environment science. This paper introduces the theories of ecological security pre-warning and tries to constitute a pre-warning model of ecological security. In terms of pressure-state-response model, the pre-warning guide line of ecological security is constructed while the pre-warning degree judging model of ecological security is established based on fuzzy optimization. As a case, the model is used to assess the present condition pre-warning of the ecological security of Anhui Province. The result is in correspondence with the real condition: the ecological security situations of 8 cities are dangerous and 9 cities are secure. The result shows that this model is scientific and effective for regional ecological security pre-warning.
基金This work was supported by Young Scientists Fundamental Research Program of Shandong Province of China (No. 031B5147).
文摘In heating, ventilating and air-conditioning (HVAC) systems, there exist severe nonlinearity, time-varying nature, disturbances and uncertainties. A new predictive functional control based on Takagi-Sugeno (T-S) fuzzy model was proposed to control HVAC systems. The T-S fuzzy model of stabilized controlled process was obtained using the least squares method, then on the basis of global linear predictive model from T-S fuzzy model, the process was controlled by the predictive functional controller. Especially the feedback regulation part was developed to compensate uncertainties of fuzzy predictive model. Finally simulation test results in HVAC systems control applications showed that the proposed fuzzy model predictive functional control improves tracking effect and robustness. Compared with the conventional PID controller, this control strategy has the advantages of less overshoot and shorter setting time, etc.