Effectiveness and safety of mouthguards are greatly affected by its thickness. The aim of this study was to clarify the effect of model height and model position on the forming table on the mouthguard thickness in the...Effectiveness and safety of mouthguards are greatly affected by its thickness. The aim of this study was to clarify the effect of model height and model position on the forming table on the mouthguard thickness in thermoforming using a circular frame. Mouthguards were thermoformed using 4.0-mm-thick ethylene-vinyl-acetate sheets and a vacuum forming machine. The sheet was sandwiched between circular frames and fixed to the clamp of the forming machine. Working models were two types of hard gypsum models trimmed so that the height of the anterior part was 25 mm (Model A) and 30 mm (Model B). The model was placed with its anterior rim positioned 40 mm (P40), 30 mm (P30), 20 mm (P20), or 10 mm (P10) from the front of the forming table. Differences in the reduction rate of the thickness due to the model height and model positions were analyzed by two-way ANOVA and Bonferroni’s multiple comparison test. Differences depending on the model height were observed at P40 at the incisal edge and P30, P20, and P10 on the labial surface, and the reduction rate of the thickness was significantly smaller in Model A (P < 0.01). As the distance from the model anterior rim to the front of the forming table was smaller, the rate of the thickness of the incisal edge and the labial surface decreases became larger. The rate of decrease in the thickness of the cusp and buccal surface was the smallest at P20. This study indicated that the difference in the thickness of the single-layer mouthguard depending on the model position on the forming table is affected by the model height. However, that is only the anterior part of the mouthguard, and the difference in thickness reduction rate is less than 5%. Additionally, in order to perform stable forming, it is useful to increase the distance from the model to the frame, and it is important to position the part whose thickness is desired to be maintained in the center of the forming table.展开更多
Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although g...Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.展开更多
An automatic procedure for building a protein polyalanine backbone from guiding alpha-carbon positions is presented here,which is different from a previously developed'spare parts'approach(Jones and Thirup,198...An automatic procedure for building a protein polyalanine backbone from guiding alpha-carbon positions is presented here,which is different from a previously developed'spare parts'approach(Jones and Thirup,1986;Claessens et al.,1989). In our procedure,the geometric restraint of angle N-CA-C is used to generate a list of polypeptide chains,and several filters are used later to select the best conformer.The most important filter is based upon the Ramachandran scatter plot of mainchain dihedral angles PHI and PSI.Results for all test cases are satisfactory,with more than 95%of peptide planes correctly reconstructed and the overall root-mean-square deviation less than 0.5 angstrom compared with the refined X-ray coordinates.展开更多
Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positi...Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.展开更多
The multi-model assessment of glacio-hydrological regimes can enhance our understanding of glacier response to climate change.This improved knowledge can uplift our computing abilities to estimate the contributing com...The multi-model assessment of glacio-hydrological regimes can enhance our understanding of glacier response to climate change.This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge.This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB)under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM)and a distributed Glacio-hydrological Degree-day Model(GDM).Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988–1992 and 1993–1997.Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor,temperature,and precipitation gradients.The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment.However,MPDDM estimated 68%of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon,while GDM estimated 14%rain and baseflow contribution.Likewise,MPDDM calculated 32%,and GDM generated 86%of the annual river runoff from snow and ice melt.MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation,respectively.Similarly,GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period.The snow and ice melt is significant in sustaining river flow in the SRB,and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability.Based on the sensitivity analysis,both models’outputs are highly sensitive to the variation in temperature.Furthermore,compared to MPDDM,GDM simulated considerable variation in the river discharge in climate scenarios,RCP4.5 and 8.5,mainly due to the higher sensitivity of GDM model outputs to temperature change.The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components,unlike one reservoir baseflow module used separately in MPDDM.The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.展开更多
Wearing a mouthguard reduces the risk of sports-related injuries, but a more comfortable design is required in order to increase the wearing rate. The aim of this study was to investigate a thermoforming method that d...Wearing a mouthguard reduces the risk of sports-related injuries, but a more comfortable design is required in order to increase the wearing rate. The aim of this study was to investigate a thermoforming method that decreases palatal thickness while maintaining labial and buccal thickness. Mouthguards were fabricated from an ethylene-vinyl acetate sheet (thickness: 4.0 mm) by using a vacuum forming machine. Four working models were prepared: 1) the anterior height was 25-mm and the posterior height was 20-mm (model A), 2) model A with the palate trimmed (model B), 3) heights 5 mm greater than model A (model C), and 4) model C with the palate trimmed (model D). The two forming conditions were as follows: 1) The sheet was formed when it sagged 15 mm below the level of the sheet frame at the top of the post under ordinary use (control);2) The sheet frame at the top of the post was lowered and the sheet covered the model when it sagged by 15 mm. The rear side of the model was pushed to move the model forward 20 mm, and then the sheet was formed (MP). Differences in mouthguard thickness due to forming conditions and model forms were analyzed by two-way analysis of variance and Bonferroni’s multiple comparison tests. Difference in forming conditions was similar for all model forms;for the MP, the thickness of the incisal edge, labial surface, cusp and buccal surface were greater, and the palatal surface was thinner than the control. On the labial and buccal surface, the thickness difference due to the model form was observed only for the MP, and models A and B were thicker than models C and D. The palatal thickness tended to be thin in the models with the trimmed palate. This study suggested that the labial and buccal thickness of the mouthguard can be maintained, and the palatal thickness can be decreased by using the model with the palate trimmed with the forming method in which the model position is moved forward immediately before the vacuum formation.展开更多
A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop p...A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber.展开更多
Accurate source apportionment of volatile organic compounds(VOCs)in soil nearby petrochemical industries prevailing globally,is critical for preventing pollution.However,in the process,seasonal effect on contamination...Accurate source apportionment of volatile organic compounds(VOCs)in soil nearby petrochemical industries prevailing globally,is critical for preventing pollution.However,in the process,seasonal effect on contamination pathways and accumulation of soil VOCs is often neglected.Herein,Yanshan Refining-Chemical Integration Park,including a carpet,refining,synthetic rubber,and two synthetic resin zones,was selected for traceability.Season variations resulted in a gradual decrease of 31 VOCs in soil from winter to summer.A method of dry deposition resistance model coupling partitioning coefficient model was created,revealing that dry deposition by gas phase was the primary pathway for VOCs to enter soil in winter and spring,with 100 times higher fux than by particle phase.Source profiles for five zones were built by gas sampling with distinct substance indicators screened,which were used for positive matrix factorization factors determination.Contributions of the five zones were 14.9%,20.8%,13.6%,22.1%,and 28.6%in winter and 33.4%,12.5%,10.7%,24.9%,and 18.5%in spring,respectively.The variation in the soil sorption capacity of VOCs causes inter-seasonal differences in contribution.The better correlation between dry deposition capacity and soil storage of VOCs made root mean square and mean absolute errors decrease averagely by 8.8%and 5.5%in winter compared to spring.This study provides new perspectives and methods for the source apportionment of soil VOCs contamination in industrial sites.展开更多
There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs...There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs)and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021.For ERURs,8 out of 13 target quinolone antibiotics(QNs)were detected,and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02–2,476 ng/L,respectively.For groundwater,all target QNs were detected,and the total QNs concentration was 1.09–23.03 ng/L for December and 4.54–170.3 ng/L for April.The distribution of QNs was dissimilar between ERURs and groundwater.Most QN concentrations were weakly correlated with land use types in the system.The results of a positive matrix factorization model(PMF)indicated four potential sources of QNs in both ERURs and groundwater,and WWTP effluents were the main source of QNs.From December to April,the contribution of WWTP effluents and agricultural emissions increased,while livestock activities decreased.Singular value decomposition(SVD)results showed that the spatial variation of most QNs was mainly contributed by sites downstream(7.09%-88.86%)of ERURs.Then,a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient(SRQ),and the SRQ for QNs was at high level,especially for the sites downstream of WWTPs.Regarding temporal variation,the SRQ for WWTP effluents,aquaculture,and agricultural emissions increased.Therefore,in order to control the antibiotic pollution,more attention should be paid to WWTP effluents,aquaculture,and agricultural emission sources for the benefit of sites downstream of WWTPs.展开更多
文摘Effectiveness and safety of mouthguards are greatly affected by its thickness. The aim of this study was to clarify the effect of model height and model position on the forming table on the mouthguard thickness in thermoforming using a circular frame. Mouthguards were thermoformed using 4.0-mm-thick ethylene-vinyl-acetate sheets and a vacuum forming machine. The sheet was sandwiched between circular frames and fixed to the clamp of the forming machine. Working models were two types of hard gypsum models trimmed so that the height of the anterior part was 25 mm (Model A) and 30 mm (Model B). The model was placed with its anterior rim positioned 40 mm (P40), 30 mm (P30), 20 mm (P20), or 10 mm (P10) from the front of the forming table. Differences in the reduction rate of the thickness due to the model height and model positions were analyzed by two-way ANOVA and Bonferroni’s multiple comparison test. Differences depending on the model height were observed at P40 at the incisal edge and P30, P20, and P10 on the labial surface, and the reduction rate of the thickness was significantly smaller in Model A (P < 0.01). As the distance from the model anterior rim to the front of the forming table was smaller, the rate of the thickness of the incisal edge and the labial surface decreases became larger. The rate of decrease in the thickness of the cusp and buccal surface was the smallest at P20. This study indicated that the difference in the thickness of the single-layer mouthguard depending on the model position on the forming table is affected by the model height. However, that is only the anterior part of the mouthguard, and the difference in thickness reduction rate is less than 5%. Additionally, in order to perform stable forming, it is useful to increase the distance from the model to the frame, and it is important to position the part whose thickness is desired to be maintained in the center of the forming table.
基金supported by National Natural Science Foundation of China (No. 62076251)sponsored by IMT-2020(5G) Promotion Group 5G+AI Work Group+3 种基金jointly sponsored by China Academy of Information and Communications TechnologyGuangdong OPPO Mobile Telecommunications Corp., Ltdvivo Mobile Communication Co., LtdHuawei Technologies Co., Ltd
文摘Artificial intelligence(AI)models are promising to improve the accuracy of wireless positioning systems,particularly in indoor environments where unpredictable radio propagation channel is a great challenge.Although great efforts have been made to explore the effectiveness of different AI models,it is still an open problem whether these models,trained with the data collected from all base stations(BSs),could work when some BSs are unavailable.In this paper,we make the first effort to enhance the generalization ability of AI wireless positioning model to adapt to the scenario where only partial BSs work.Particularly,a Siamese Network based Wireless Positioning Model(SNWPM)is proposed to predict the location of mobile user equipment from channel state information(CSI)collected from 5G BSs.Furthermore,a Feature Aware Attention Module(FAAM)is introduced to reinforce the capability of feature extraction from CSI data.Experiments are conducted on the 2022 Wireless Communication AI Competition(WAIC)dataset.The proposed SNWPM achieves decimeter-level positioning accuracy even if the data of partial BSs are unavailable.Compared with other AI models,the proposed SNWPM can reduce the positioning error by nearly 50%to more than 60%while using less parameters and lower computation resources.
文摘An automatic procedure for building a protein polyalanine backbone from guiding alpha-carbon positions is presented here,which is different from a previously developed'spare parts'approach(Jones and Thirup,1986;Claessens et al.,1989). In our procedure,the geometric restraint of angle N-CA-C is used to generate a list of polypeptide chains,and several filters are used later to select the best conformer.The most important filter is based upon the Ramachandran scatter plot of mainchain dihedral angles PHI and PSI.Results for all test cases are satisfactory,with more than 95%of peptide planes correctly reconstructed and the overall root-mean-square deviation less than 0.5 angstrom compared with the refined X-ray coordinates.
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金supported by the National Key Technology R&D Program of China (No. 2008BAH37B05095)
文摘Deployment of nodes based on K-barrier coverage in an underground wireless sensor network is described. The network has automatic routing recovery by using a basic information table (BIT) for each node. An RSSI positioning algorithm based on a path loss model in the coal mine is used to calculate the path loss in real time within the actual lane way environment. Simulation results show that the packet loss can be controlled to less than 15% by the routing recovery algorithm under special recovery circum- stances. The location precision is within 5 m, which greatly enhances performance compared to tradi- tional frequency location systems. This approach can meet the needs for accurate location underground.
基金the Himalayan Cryosphere, Climate and Disaster Research Center (HiCCDRC), Kathmandu University for constant support throughout the researchfunded by The Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(Grant No. 2019QZKK0904)+3 种基金supported by the Comprehensive Investigation and Assessment of Natural Hazards in China-Pakistan Economic Corridor (Grant No. 2018FY100500)Ministry of Science and Technology Basic Resources Survey Project (2018FY100506)International Science andTechnology Cooperation Program of China (No. 2018YFE0100100)the National Natural Science Foundation of China (41925030 and 41661144028)
文摘The multi-model assessment of glacio-hydrological regimes can enhance our understanding of glacier response to climate change.This improved knowledge can uplift our computing abilities to estimate the contributing components of the river discharge.This study examined and compared the hydrological responses in the glacier-dominated Shigar River basin(SRB)under various climatic scenarios using a semi-distributed Modified Positive Degree Day Model(MPDDM)and a distributed Glacio-hydrological Degree-day Model(GDM).Both glacio-hydrological models were calibrated and validated against the observed hydro-meteorological data from 1988–1992 and 1993–1997.Temperature and precipitation data from Shigar and Skardu meteorological stations were used along with field estimated degree-day factor,temperature,and precipitation gradients.The results from both models indicate that the snow and ice melt are vital contributors to sustain river flow in the catchment.However,MPDDM estimated 68%of rain and baseflow contribution to annual river runoff despite low precipitation during the summer monsoon,while GDM estimated 14%rain and baseflow contribution.Likewise,MPDDM calculated 32%,and GDM generated 86%of the annual river runoff from snow and ice melt.MPDDM simulated river discharge with 0.86 and 0.78 NSE for calibration and validation,respectively.Similarly,GDM simulated river discharge with improved accuracy of 0.87 for calibration and 0.84 NSE for the validation period.The snow and ice melt is significant in sustaining river flow in the SRB,and substantial changes in melt characteristics of snow and ice are expected to have severe consequences on seasonal water availability.Based on the sensitivity analysis,both models’outputs are highly sensitive to the variation in temperature.Furthermore,compared to MPDDM,GDM simulated considerable variation in the river discharge in climate scenarios,RCP4.5 and 8.5,mainly due to the higher sensitivity of GDM model outputs to temperature change.The integration of an updated melt module and two reservoir baseflow module in GDM is anticipated to advance the representation of hydrological components,unlike one reservoir baseflow module used separately in MPDDM.The restructured melt and baseflow modules in GDM have fundamentally enriched our perception of glacio-hydrological dynamics in the catchment.
文摘Wearing a mouthguard reduces the risk of sports-related injuries, but a more comfortable design is required in order to increase the wearing rate. The aim of this study was to investigate a thermoforming method that decreases palatal thickness while maintaining labial and buccal thickness. Mouthguards were fabricated from an ethylene-vinyl acetate sheet (thickness: 4.0 mm) by using a vacuum forming machine. Four working models were prepared: 1) the anterior height was 25-mm and the posterior height was 20-mm (model A), 2) model A with the palate trimmed (model B), 3) heights 5 mm greater than model A (model C), and 4) model C with the palate trimmed (model D). The two forming conditions were as follows: 1) The sheet was formed when it sagged 15 mm below the level of the sheet frame at the top of the post under ordinary use (control);2) The sheet frame at the top of the post was lowered and the sheet covered the model when it sagged by 15 mm. The rear side of the model was pushed to move the model forward 20 mm, and then the sheet was formed (MP). Differences in mouthguard thickness due to forming conditions and model forms were analyzed by two-way analysis of variance and Bonferroni’s multiple comparison tests. Difference in forming conditions was similar for all model forms;for the MP, the thickness of the incisal edge, labial surface, cusp and buccal surface were greater, and the palatal surface was thinner than the control. On the labial and buccal surface, the thickness difference due to the model form was observed only for the MP, and models A and B were thicker than models C and D. The palatal thickness tended to be thin in the models with the trimmed palate. This study suggested that the labial and buccal thickness of the mouthguard can be maintained, and the palatal thickness can be decreased by using the model with the palate trimmed with the forming method in which the model position is moved forward immediately before the vacuum formation.
基金Supported by Central Universities Fundamental Research Projects Foundation(11QG22)State Key Laboratory of Automobile Noise Vibration and Safety Projects Foundation(NVHSKL-201105)
文摘A comprehensive model that included mechanical dynamics of the shock absorber coupled with its thermal properties was proposed innovatively.Moreover a thermal-mechanical coupled model which reflected the closed-loop positive feedback system was established by using MATLAB/SIMULINK,and some curves of shock absorber temperature rising characteristic were obtained by simulation &computation under several operating modes and different parameters conditions.Research results show that:shock absorber design parameters,external excitations,and thermo-physical properties parameter,such as oil density have effect on the shock absorber temperature rising characteristic.However other thermo-physical properties parameters,such as oil specific heat,cylinder density,cylinder specific heat,and cylinder thermal conductivity,have no effect on it.The results may be used for studying reliability design of the shock absorber.
基金supported by the National Key R&D Program of China (No.2018YFC1800300)the National Natural Science Foundation of China (Nos.41807493,22006156 and 21876193)。
文摘Accurate source apportionment of volatile organic compounds(VOCs)in soil nearby petrochemical industries prevailing globally,is critical for preventing pollution.However,in the process,seasonal effect on contamination pathways and accumulation of soil VOCs is often neglected.Herein,Yanshan Refining-Chemical Integration Park,including a carpet,refining,synthetic rubber,and two synthetic resin zones,was selected for traceability.Season variations resulted in a gradual decrease of 31 VOCs in soil from winter to summer.A method of dry deposition resistance model coupling partitioning coefficient model was created,revealing that dry deposition by gas phase was the primary pathway for VOCs to enter soil in winter and spring,with 100 times higher fux than by particle phase.Source profiles for five zones were built by gas sampling with distinct substance indicators screened,which were used for positive matrix factorization factors determination.Contributions of the five zones were 14.9%,20.8%,13.6%,22.1%,and 28.6%in winter and 33.4%,12.5%,10.7%,24.9%,and 18.5%in spring,respectively.The variation in the soil sorption capacity of VOCs causes inter-seasonal differences in contribution.The better correlation between dry deposition capacity and soil storage of VOCs made root mean square and mean absolute errors decrease averagely by 8.8%and 5.5%in winter compared to spring.This study provides new perspectives and methods for the source apportionment of soil VOCs contamination in industrial sites.
基金This work was supported by the Natural Science Foundation of Hebei Province(No.D2019208152)the Natural Science Foundation of Higher Education Institutions of Hebei Province(No.ZD2021046).
文摘There is a large surface-groundwater exchange downstream ofwastewater treatment plants(WWTPs),and antibiotics upstream may influence sites downstream of rivers.Thus,samples from 9 effluent-receiving urban rivers(ERURs)and 12 groundwater sites were collected in Shijiazhuang City in December 2020 and April 2021.For ERURs,8 out of 13 target quinolone antibiotics(QNs)were detected,and the total concentration of QNs in December and April were 100.6-4,398 ng/L and 8.02–2,476 ng/L,respectively.For groundwater,all target QNs were detected,and the total QNs concentration was 1.09–23.03 ng/L for December and 4.54–170.3 ng/L for April.The distribution of QNs was dissimilar between ERURs and groundwater.Most QN concentrations were weakly correlated with land use types in the system.The results of a positive matrix factorization model(PMF)indicated four potential sources of QNs in both ERURs and groundwater,and WWTP effluents were the main source of QNs.From December to April,the contribution of WWTP effluents and agricultural emissions increased,while livestock activities decreased.Singular value decomposition(SVD)results showed that the spatial variation of most QNs was mainly contributed by sites downstream(7.09%-88.86%)of ERURs.Then,a new method that combined the results of SVD and PMF was developed for a specific-source-site risk quotient(SRQ),and the SRQ for QNs was at high level,especially for the sites downstream of WWTPs.Regarding temporal variation,the SRQ for WWTP effluents,aquaculture,and agricultural emissions increased.Therefore,in order to control the antibiotic pollution,more attention should be paid to WWTP effluents,aquaculture,and agricultural emission sources for the benefit of sites downstream of WWTPs.