期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Evaluation of different approaches to individual tree growth and survival modelling using data collected at irregular intervals-a case study for Pinus patula in Kenya 被引量:3
1
作者 Rita Juma Timo Pukkala +1 位作者 Sergio de-Miguel Mbae Muchiri 《Forestry Studies in China》 CAS 2014年第2期105-117,共13页
Background: The minimum set of sub-models for simulating stand dynamics on an individual-tree basis consists of tree-level models for diameter increment and survival. Ingrowth model is a necessary third component in ... Background: The minimum set of sub-models for simulating stand dynamics on an individual-tree basis consists of tree-level models for diameter increment and survival. Ingrowth model is a necessary third component in uneven-aged management. The development of this type of model set needs data from permanent plots, in which all trees have been numbered and measured at regular intervals for diameter and survival. New trees passing the ingrowth limit should also be numbered and measured. Unfortunately, few datasets meet all these requirements. The trees may not have numbers or the length of the measurement interval varies. Ingrowth trees may not have been measured, or the number tags may have disappeared causing errors in tree identification. Methods: This article discussed and demonstrated the use of an optimization-based approach to individual-tree growth modelling, which makes it possible to utilize data sets having one or several of the above deficiencies. The idea is to estimate all parameters of the sub-models of a growth simulator simultaneously in such a way that, when simulation begins from the diameter distribution at the first measurement occasion, it yields a similar ending diameter distribution as measured in the second measurement occasion. The method was applied to Pinus patula permanent sample plot data from Kenya. In this dataset, trees were correctly numbered and identified but measurement interval varied from 1 to 13 years. Two simple regression approaches were used and compared to the optimization-based model recovery approach. Results: The optimization-based approach resulted in far more accurate simulations of stand basal area and number of surviving trees than the equations fitted through regression analysis. Conclusions: The optimization-based modelling approach can be recommended for growth modelling when the modelling data have been collected at irregular measurement intervals. 展开更多
关键词 model recovery Stand dynamics Observational plots Permanent sample plots
下载PDF
WHU-Grace01s:A new temporal gravity field model recovered from GRACE KBRR data alone 被引量:2
2
作者 Zhou Hao Luo Zhicai Zhong Bo 《Geodesy and Geodynamics》 2015年第5期316-323,共8页
A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this pa... A new temporal gravity field model called WHU-Grace01s solely recovered from Gravity Recovery and Climate Experiment (GRACE) K-Band Range Rate (KBRR) data based on dynamic integral approach is presented in this paper. After meticulously preprocessing of the GRACE KBRR data, the root mean square of its post residuals is about 0.2 micrometers per second, and seventy-two monthly temporal solutions truncated to degree and order 60 are computed for the period from January 2003 to December 2008. After applying the combi- nation filter in WHU-Grace01s, the global temporal signals show obvious periodical change rules in the large-scale fiver basins. In terms of the degree variance, our solution is smaller at high degrees, and shows a good consistency at the rest of degrees with the Release 05 models from Center for Space Research (CSR), GeoForschungsZentrum Potsdam (GFZ) and Jet Pro- pulsion Laboratory 0PL). Compared with other published models in terms of equivalent water height distribution, our solution is consistent with those published by CSR, GFZ, JPL, Delft institute of Earth Observation and Space system (DEOS), Tongji University (Tongji), Institute of Theoretical Geodesy (ITG), Astronomical Institute in University of Bern (AIUB) and Groupe de Recherche de Geodesie Spatiale (GRGS}, which indicates that the accuracy of WHU-Grace01s has a good consistency with the previously published GRACE solutions. 展开更多
关键词 Temporal gravity field model Gravity recovery and Climate Experiment (GRACE) Dynamic integral approach K-Band Range Rate (KBRR) Satellite gravity Spherical harmonics Equivalent water height Geopotential determination
下载PDF
Monthly gravity field solution from GRACE range measurements using modified short arc approach 被引量:4
3
作者 Shen Yunzhong Chen Qiujie Xu Houze 《Geodesy and Geodynamics》 2015年第4期261-266,共6页
In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measureme... In this paper we present a series of monthly gravity field solutions from Gravity Recovery and Climate Experiment(GRACE) range measurements using modified short arc approach,in which the ambiguity of range measurements is eliminated via differentiating two adjacent range measurements.The data used for developing our monthly gravity field model are same as Tongji-GRACEOl model except that the range measurements are used to replace the range rate measurements,and our model is truncated to degree and order 60,spanning Jan.2004 to Dec.2010 also same as Tongji-GRACE01 model.Based on the comparison results of the C_(2,0),C_(2,1),S_(2,1),and C_(15,15),S_(15,15),time series and the global mass change signals as well as the mass change time series in Amazon area of our model with those of Tongji-GRACE01 model,we can conclude that our monthly gravity field model is comparable with Tongji-GRACE01 monthly model. 展开更多
关键词 Satellite geodesy Gravity field model Time-variable gravity field Gravity satellite Gravity recovery and Climate Experiment (GRACE)Short arc approach Range data Mass change Tongji-GRACE01
下载PDF
Emergency management capacity assessment for urban rail transit-an example of Beijing Metro Line 13
4
作者 Jiao Liu Yun Qi Wei Wang 《Transportation Safety and Environment》 EI 2024年第1期109-115,共7页
In order to improve the emergency management capability of urban rail transit system and reduce accidents during metro operation,an emergency management capability evaluation method combining analytic hierarchy proces... In order to improve the emergency management capability of urban rail transit system and reduce accidents during metro operation,an emergency management capability evaluation method combining analytic hierarchy process(AHP)and technique for order preference by similarity to ideal solution(TOPSIS)is proposed.Based on the Prevention Preparation Response Recovery(PPRR)model,factors influencing the emergency management capability of the urban rail transit system are summarized from the perspective of‘human,machine,environment and management’.Then,an emergency management capability evaluation index system containing of 20 secondary indicators is constructed in four stages:emergency prevention,emergency preparation,emergency response and emergency recovery.The weights of indicators are calculated using the AHP method,and the closeness of each indicator to the optimal solution is analysed with the TOPSIS method.Finally,take the Beijing Metro Line 13 as an example to investigate the level of emergency management capability of urban rail transit.The results show that the emergency management capability of Beijing’s urban rail transit system is‘well’,among which hazard prevention measures(0.31)and emergency response team(0.34)have a greater weight on the emergency management capability of rail transit.The model can more accurately assess the emergency management capability of urban rail transit and provide a basis for emergency management. 展开更多
关键词 urban rail transit emergency management capability analytic hierarchy process(AHP) technique for order preference by similarity to ideal solution(TOPSIS) prevention preparation response recovery(PPRR)model
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部