In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed metho...In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.展开更多
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me...Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.展开更多
Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to i...Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.展开更多
Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computatio...Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors.展开更多
An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as dron...An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.展开更多
Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using general...Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.展开更多
This study aimed to comprehensively investigate the essential considerations in designing adaptive clothing for women with lower limb prostheses in Saudi Arabia. Employing a qualitative methodology, the research entai...This study aimed to comprehensively investigate the essential considerations in designing adaptive clothing for women with lower limb prostheses in Saudi Arabia. Employing a qualitative methodology, the research entailed semi-structured, in-depth interviews with women utilizing lower limb prostheses and prosthetic specialists. This approach was selected to unearth pivotal design prerequisites and comprehend the specific challenges these women encounter within the realm of clothing. The utilization of selective sampling facilitated the collection of intricate and valuable insights. A Functional, Expressive, and Aesthetic (FEA) User Needs model was utilized to scrutinize participant feedback. Functional requisites encompass ease of dressing and undressing, accessibility to the prosthetic limb, comfort, mobility with the prosthesis, and appropriate fit. Additionally, participants highlighted various expressive needs, including privacy preservation, modesty, camouflaging disability appearances, maintaining alignment with non-disabled women’s fashion, and considerations about the aesthetic aspects of garments.展开更多
In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow st...In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.展开更多
Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic a...Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.展开更多
This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy ...This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.展开更多
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod...This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.展开更多
We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. S...We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.展开更多
We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract informa...We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.展开更多
Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predictin...Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predicting peak wind gusts in numerical models is essential for saving lives and preventing economic losses.This study investigates the climatology of peak wind gusts and their associated gust factors(GFs)using observations in the coastal and open ocean of the northern South China Sea(NSCS),where severe gust-producing weather occurs throughout the year.The stratified climatology demonstrates that the peak wind gust and GF vary with seasons and particularly with weather types.Based on the inversely proportional relationship between the GF and mean wind speed(MWS),a variety of GF models are constructed through least squares regression analysis.Peak gust speed(PGS)forecasts are obtained through the GF models by multiplying the GFs by observed wind speeds rather than forecasted wind speeds.The errors are thus entirely due to the representation of the GF models.The GF models are improved with weather-adaptive GFs,as evaluated by the stratified MWS.Nevertheless,these weather-adaptive GF models show negative bias for predicting stronger PGSs due to insufficient data representation of the extreme wind gusts.The evaluation of the above models provides insight into maximizing the performance of GF models.This study further proposes a stratified process for forecasting peak wind gusts for routine operations.展开更多
A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic gr...A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.展开更多
In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions ...In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector...The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.展开更多
A novel performance enhancement method of nonlinear sensor based on the Volterra series model is proposed. The Volterra series model, which is considered a nonlinear filter that can reduce sensor noise, presents an ef...A novel performance enhancement method of nonlinear sensor based on the Volterra series model is proposed. The Volterra series model, which is considered a nonlinear filter that can reduce sensor noise, presents an effective way for modeling and compensating a nonlinear sensor. In the experiment, the low accuracy pressure sensor MPX10 was used as the actual object, and higher accuracy sensor MPX2010 was used as the reference to provide the necessary teaching data for training the Volterra model. The simulation shows that the accuracy of MPX10 changes from 0.354-0.420 to 0.041-0.053 after the Volterra filter is applied. Obviously this scheme can effectively improve the sensor performance. Moreover, the scheme provides greater accuracy and environmental suitability for a nonlinear sensor.展开更多
A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is ...A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is reduced to simplify the design without degrading much of the performance. Model following adaptive control laws in discrete form are derived. These laws satisfy the hyperstability condition for taking care of the load and machine parameter changes of the drive. A microprocessor 8098 is used to develop the speed controller. The implementation of the control system uses only available variables of the reference model and the controlled plant. Experimental results are given to demonstrate the good performance of the system.展开更多
基金supported by the National Science Fund for Distinguished Young Scholars (62225303)the Fundamental Research Funds for the Central Universities (buctrc202201)+1 种基金China Scholarship Council,and High Performance Computing PlatformCollege of Information Science and Technology,Beijing University of Chemical Technology。
文摘In order to address the output feedback issue for linear discrete-time systems, this work suggests a brand-new adaptive dynamic programming(ADP) technique based on the internal model principle(IMP). The proposed method, termed as IMP-ADP, does not require complete state feedback-merely the measurement of input and output data. More specifically, based on the IMP, the output control problem can first be converted into a stabilization problem. We then design an observer to reproduce the full state of the system by measuring the inputs and outputs. Moreover, this technique includes both a policy iteration algorithm and a value iteration algorithm to determine the optimal feedback gain without using a dynamic system model. It is important that with this concept one does not need to solve the regulator equation. Finally, this control method was tested on an inverter system of grid-connected LCLs to demonstrate that the proposed method provides the desired performance in terms of both tracking and disturbance rejection.
基金Project supported by the National Natural Science Foundation of China(Nos.12272211,12072181,12121002)。
文摘Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.
基金supported by the Shanghai Philosophy and Social Science Foundation(2022ECK004)Shanghai Soft Science Research Project(23692123400)。
文摘Dominant technology formation is the key for the hightech industry to“cross the chasm”and gain an established foothold in the market(and hence disrupt the regime).Therefore,a stimulus-response model is proposed to investigate the dominant technology by exploring its formation process and mechanism.Specifically,based on complex adaptive system theory and the basic stimulus-response model,we use a combination of agent-based modeling and system dynamics modeling to capture the interactions between dominant technology and the socio-technical landscape.The results indicate the following:(i)The dynamic interaction is“stimulus-reaction-selection”,which promotes the dominant technology’s formation.(ii)The dominant technology’s formation can be described as a dynamic process in which the adaptation intensity of technology standards increases continuously until it becomes the leading technology under the dual action of internal and external mechanisms.(iii)The dominant technology’s formation in the high-tech industry is influenced by learning ability,the number of adopting users and adaptability.Therein,a“critical scale”of learning ability exists to promote the formation of leading technology:a large number of adopting users can promote the dominant technology’s formation by influencing the adaptive response of technology standards to the socio-technical landscape and the choice of technology standards by the socio-technical landscape.There is a minimum threshold and a maximum threshold for the role of adaptability in the dominant technology’s formation.(iv)The socio-technical landscape can promote the leading technology’s shaping in the high-tech industry,and different elements have different effects.This study promotes research on the formation mechanism of dominant technology in the high-tech industry,presents new perspectives and methods for researchers,and provides essential enlightenment for managers to formulate technology strategies.
基金support by the Air Force Office of Scientific Research under Grant No.FA9550-20-1-0358 and Grant No.FA9550-22-1-0004.
文摘Adaptive mesh refinement (AMR) is fairly practiced in the context of high-dimensional, mesh-based computational models. However, it is in its infancy in that of low-dimensional, generalized-coordinate-based computational models such as projection-based reduced-order models. This paper presents a complete framework for projection-based model order reduction (PMOR) of nonlinear problems in the presence of AMR that builds on elements from existing methods and augments them with critical new contributions. In particular, it proposes an analytical algorithm for computing a pseudo-meshless inner product between adapted solution snapshots for the purpose of clustering and PMOR. It exploits hyperreduction—specifically, the energy-conserving sampling and weighting hyperreduction method—to deliver for nonlinear and/or parametric problems the desired computational gains. Most importantly, the proposed framework for PMOR in the presence of AMR capitalizes on the concept of state-local reduced-order bases to make the most of the notion of a supermesh, while achieving computational tractability. Its features are illustrated with CFD applications grounded in AMR and its significance is demonstrated by the reported wall-clock speedup factors.
基金supported by the National Natural Science Foundation of China (61773142)。
文摘An algorithm to track multiple sharply maneuvering targets without prior knowledge about new target birth is proposed. These targets are capable of achieving sharp maneuvers within a short period of time, such as drones and agile missiles.The probability hypothesis density (PHD) filter, which propagates only the first-order statistical moment of the full target posterior, has been shown to be a computationally efficient solution to multitarget tracking problems. However, the standard PHD filter operates on the single dynamic model and requires prior information about target birth distribution, which leads to many limitations in terms of practical applications. In this paper,we introduce a nonzero mean, white noise turn rate dynamic model and generalize jump Markov systems to multitarget case to accommodate sharply maneuvering dynamics. Moreover, to adaptively estimate newborn targets’information, a measurement-driven method based on the recursive random sampling consensus (RANSAC) algorithm is proposed. Simulation results demonstrate that the proposed method achieves significant improvement in tracking multiple sharply maneuvering targets with adaptive birth estimation.
文摘Adaptive fractional polynomial modeling of general correlated outcomes is formulated to address nonlinearity in means, variances/dispersions, and correlations. Means and variances/dispersions are modeled using generalized linear models in fixed effects/coefficients. Correlations are modeled using random effects/coefficients. Nonlinearity is addressed using power transforms of primary (untransformed) predictors. Parameter estimation is based on extended linear mixed modeling generalizing both generalized estimating equations and linear mixed modeling. Models are evaluated using likelihood cross-validation (LCV) scores and are generated adaptively using a heuristic search controlled by LCV scores. Cases covered include linear, Poisson, logistic, exponential, and discrete regression of correlated continuous, count/rate, dichotomous, positive continuous, and discrete numeric outcomes treated as normally, Poisson, Bernoulli, exponentially, and discrete numerically distributed, respectively. Example analyses are also generated for these five cases to compare adaptive random effects/coefficients modeling of correlated outcomes to previously developed adaptive modeling based on directly specified covariance structures. Adaptive random effects/coefficients modeling substantially outperforms direct covariance modeling in the linear, exponential, and discrete regression example analyses. It generates equivalent results in the logistic regression example analyses and it is substantially outperformed in the Poisson regression case. Random effects/coefficients modeling of correlated outcomes can provide substantial improvements in model selection compared to directly specified covariance modeling. However, directly specified covariance modeling can generate competitive or substantially better results in some cases while usually requiring less computation time.
文摘This study aimed to comprehensively investigate the essential considerations in designing adaptive clothing for women with lower limb prostheses in Saudi Arabia. Employing a qualitative methodology, the research entailed semi-structured, in-depth interviews with women utilizing lower limb prostheses and prosthetic specialists. This approach was selected to unearth pivotal design prerequisites and comprehend the specific challenges these women encounter within the realm of clothing. The utilization of selective sampling facilitated the collection of intricate and valuable insights. A Functional, Expressive, and Aesthetic (FEA) User Needs model was utilized to scrutinize participant feedback. Functional requisites encompass ease of dressing and undressing, accessibility to the prosthetic limb, comfort, mobility with the prosthesis, and appropriate fit. Additionally, participants highlighted various expressive needs, including privacy preservation, modesty, camouflaging disability appearances, maintaining alignment with non-disabled women’s fashion, and considerations about the aesthetic aspects of garments.
文摘In this article,lane change models for mixed traffic flow under cooperative adaptive cruise control(CACC)platoon formation are established.The analysis begins by examining the impact of lane changes on traffic flow stability.The influences of various factors such as lane change locations,timing,and the current traffic state on stability are discussed.In this analysis,it is assumed that the lane change location and the entry position in the adjacent lane have already been selected,without considering the specific intention behind the lane change.The speeds of the involved vehicles are adjusted based on an existing lane change model,and various conditions are analyzed for traffic flow disturbances,including duration,shock amplitude,and driving delays.Numerical calculations are provided to illustrate these effects.Additionally,traffic flow stability is factored into the lane change decision-making process.By incorporating disturbances to the fleet into the lane change income model,both a lane change intention model and a lane change execution model are constructed.These models are then compared with a model that does not account for stability,leading to the corresponding conclusions.
基金supported by the fund of Henan Key Laboratory of Superhard Abrasives and Grinding Equipment,Henan University of Technology(Grant No.JDKFJJ2023005)the Key Science and Technology Program of Henan Province(Grant Nos.242102221001 and 232102220085)the Science and Technology Key Project Foundation of Henan Provincial Education Department(Grant No.23A460014).
文摘Hydraulic actuators are highly nonlinear when they are subjected to different types of model uncertainties and dynamic disturbances.These unfavorable factors adversely affect the control performance of the hydraulic actuator.Although various control methods have been employed to improve the tracking precision of the dynamic system,optimizing and adjusting control gain to mitigate the hydraulic actuator model uncertainties remains elusive.This study presents an adaptive back-stepping sliding mode controller(ABSMC)to enhance the trajectory tracking precision,where the virtual control law is constructed to replace the position error.The adaptive control theory is introduced in back-stepping controller design to compensate for the model uncertainties and time-varying disturbances.Based on Lyapunov theory,the finite-time convergence of the position tracking errors is proved.Furthermore,the effectiveness of the developed control scheme is conducted via extensive comparative experiments.
基金The National Natural Science Foundation of China (32371993)The Natural Science Research Key Project of Anhui Provincial University(2022AH040125&2023AH040135)The Key Research and Development Plan of Anhui Province (202204c06020022&2023n06020057)。
文摘This study aimed to address the challenge of accurately and reliably detecting tomatoes in dense planting environments,a critical prerequisite for the automation implementation of robotic harvesting.However,the heavy reliance on extensive manually annotated datasets for training deep learning models still poses significant limitations to their application in real-world agricultural production environments.To overcome these limitations,we employed domain adaptive learning approach combined with the YOLOv5 model to develop a novel tomato detection model called as TDA-YOLO(tomato detection domain adaptation).We designated the normal illumination scenes in dense planting environments as the source domain and utilized various other illumination scenes as the target domain.To construct bridge mechanism between source and target domains,neural preset for color style transfer is introduced to generate a pseudo-dataset,which served to deal with domain discrepancy.Furthermore,this study combines the semi-supervised learning method to enable the model to extract domain-invariant features more fully,and uses knowledge distillation to improve the model's ability to adapt to the target domain.Additionally,for purpose of promoting inference speed and low computational demand,the lightweight FasterNet network was integrated into the YOLOv5's C3 module,creating a modified C3_Faster module.The experimental results demonstrated that the proposed TDA-YOLO model significantly outperformed original YOLOv5s model,achieving a mAP(mean average precision)of 96.80%for tomato detection across diverse scenarios in dense planting environments,increasing by 7.19 percentage points;Compared with the latest YOLOv8 and YOLOv9,it is also 2.17 and 1.19 percentage points higher,respectively.The model's average detection time per image was an impressive 15 milliseconds,with a FLOPs(floating point operations per second)count of 13.8 G.After acceleration processing,the detection accuracy of the TDA-YOLO model on the Jetson Xavier NX development board is 90.95%,the mAP value is 91.35%,and the detection time of each image is 21 ms,which can still meet the requirements of real-time detection of tomatoes in dense planting environment.The experimental results show that the proposed TDA-YOLO model can accurately and quickly detect tomatoes in dense planting environment,and at the same time avoid the use of a large number of annotated data,which provides technical support for the development of automatic harvesting systems for tomatoes and other fruits.
基金supported by the National Natural Science Foundation of China(62371382,62071346)the Science,Technology&Innovation Project of Xiong’an New Area(2022XAGG0181)the Special Funds for Creative Research(2022C61540)。
文摘This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters.
文摘We applied adaptive dynamics to double slit interference phenomenon using particle model and obtained partial successful results in our previous report. The patterns qualitatively corresponded well with experiments. Several properties such as concave single slit pattern and large influence of slight displacement of the emission position were different from the experimental results. In this study we tried other slit conditions and obtained consistent patterns with experiments. We do not claim that the adaptive dynamics is the principle of quantum mechanics, but the present results support the probability of adaptive dynamics as the candidate of the basis of quantum mechanics. We discuss the advantages of the adaptive dynamical view for foundations of quantum mechanics.
文摘We present an approach to classify medical text at a sentence level automatically.Given the inherent complexity of medical text classification,we employ adapters based on pre-trained language models to extract information from medical text,facilitating more accurate classification while minimizing the number of trainable parameters.Extensive experiments conducted on various datasets demonstrate the effectiveness of our approach.
基金National Key R&D Program of China(2023YFC3008002)National Natural Science Foundation of China(41805035)+1 种基金Guangdong Basic and Applied Basic Research Foundation(2022A1515011288)Key Innovation Team of China Meteorological Administration(CMA2023ZD08)。
文摘Wind gusts are common environmental hazards that can damage buildings,bridges,aircraft,and cruise ships and interrupt electric power distribution,air traffic,waterway transport and port operations.Accurately predicting peak wind gusts in numerical models is essential for saving lives and preventing economic losses.This study investigates the climatology of peak wind gusts and their associated gust factors(GFs)using observations in the coastal and open ocean of the northern South China Sea(NSCS),where severe gust-producing weather occurs throughout the year.The stratified climatology demonstrates that the peak wind gust and GF vary with seasons and particularly with weather types.Based on the inversely proportional relationship between the GF and mean wind speed(MWS),a variety of GF models are constructed through least squares regression analysis.Peak gust speed(PGS)forecasts are obtained through the GF models by multiplying the GFs by observed wind speeds rather than forecasted wind speeds.The errors are thus entirely due to the representation of the GF models.The GF models are improved with weather-adaptive GFs,as evaluated by the stratified MWS.Nevertheless,these weather-adaptive GF models show negative bias for predicting stronger PGSs due to insufficient data representation of the extreme wind gusts.The evaluation of the above models provides insight into maximizing the performance of GF models.This study further proposes a stratified process for forecasting peak wind gusts for routine operations.
基金Projects(51161011,11364024)supported by the National Natural Science Foundation of ChinaProject(1204GKCA065)supported by the Key Technology R&D Program of Gansu Province,China+1 种基金Project(201210)supported by the Fundamental Research Funds for the Universities of Gansu Province,ChinaProject(J201304)supported by the Funds for Distinguished Young Scientists of Lanzhou University of Technology,China
文摘A mathematical model combined projection algorithm with phase-field method was applied. The adaptive finite element method was adopted to solve the model based on the non-uniform grid, and the behavior of dendritic growth was simulated from undercooled nickel melt under the forced flow. The simulation results show that the asymmetry behavior of the dendritic growth is caused by the forced flow. When the flow velocity is less than the critical value, the asymmetry of dendrite is little influenced by the forced flow. Once the flow velocity reaches or exceeds the critical value, the controlling factor of dendrite growth gradually changes from thermal diffusion to convection. With the increase of the flow velocity, the deflection angle towards upstream direction of the primary dendrite stem becomes larger. The effect of the dendrite growth on the flow field of the melt is apparent. With the increase of the dendrite size, the vortex is present in the downstream regions, and the vortex region is gradually enlarged. Dendrite tips appear to remelt. In addition, the adaptive finite element method can reduce CPU running time by one order of magnitude compared with uniform grid method, and the speed-up ratio is proportional to the size of computational domain.
基金The National Natural Science Foundation of China (No.61172135,61101198)the Aeronautical Foundation of China (No.20115152026)
文摘In order to enhance the reliability of the moving target detection, an adaptive moving target detection algorithm based on the Gaussian mixture model is proposed. This algorithm employs Gaussian mixture distributions in modeling the background of each pixel. As a result, the number of Gaussian distributions is not fixed but adaptively changes with the change of the pixel value frequency. The pixels of the difference image are divided into two parts according to their values. Then the two parts are separately segmented by the adaptive threshold, and finally the foreground image is obtained. The shadow elimination method based on morphological reconstruction is introduced to improve the performance of foreground image's segmentation. Experimental results show that the proposed algorithm can quickly and accurately build the background model and it is more robust in different real scenes.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
文摘The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.
基金TheNaturalScienceFoundationofGuangdong Province (No.0 3 2 0 3 0 ) .
文摘A novel performance enhancement method of nonlinear sensor based on the Volterra series model is proposed. The Volterra series model, which is considered a nonlinear filter that can reduce sensor noise, presents an effective way for modeling and compensating a nonlinear sensor. In the experiment, the low accuracy pressure sensor MPX10 was used as the actual object, and higher accuracy sensor MPX2010 was used as the reference to provide the necessary teaching data for training the Volterra model. The simulation shows that the accuracy of MPX10 changes from 0.354-0.420 to 0.041-0.053 after the Volterra filter is applied. Obviously this scheme can effectively improve the sensor performance. Moreover, the scheme provides greater accuracy and environmental suitability for a nonlinear sensor.
文摘A model following adaptive control system for CSIM is presented in this paper. A dynamic mathematical model of slip control based system is obtained. With the help of model reducing technique, full order model is reduced to simplify the design without degrading much of the performance. Model following adaptive control laws in discrete form are derived. These laws satisfy the hyperstability condition for taking care of the load and machine parameter changes of the drive. A microprocessor 8098 is used to develop the speed controller. The implementation of the control system uses only available variables of the reference model and the controlled plant. Experimental results are given to demonstrate the good performance of the system.