期刊文献+
共找到3,106篇文章
< 1 2 156 >
每页显示 20 50 100
Coupled hydro-mechanical analysis of slope under rainfall using modified elasto-plastic model for unsaturated soils 被引量:3
1
作者 王柳江 刘斯宏 +1 位作者 傅中志 李卓 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第5期1892-1900,共9页
Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression fo... Two modifications for the basic Barcelona model(BBM) are present. One is the replacement of the net stress by the average skeleton stress in unsaturated soil modeling, and the other is the adoption of an expression for the load-collapse(LC) yield surface that can match flexibly the normal compression lines at different suctions. The predictions of the modified BBM for the controlled-suction triaxial test on the unsaturated compacted clay are presented and compared with the experimental results. A good agreement between the predicted and experimental results demonstrates the reasonability of the modified BBM. On this basis, the coupled processes of groundwater flow and soil deformation in a homogeneous soil slope under a long heavy rainfall are simulated with the proposed elasto-plastic model. The numerical results reveal that the failure of a slope under rainfall infiltration is due to both the reduction of soil suction and the significant rise in groundwater table. The evolution of the displacements is greatly related to the change of suction. The maximum collapse deformation happens near the surface of slope where infiltrated rainwater can quickly reach. The results may provide a helpful reference for hazard assessment and control of rainfall-induced landslides. 展开更多
关键词 unsaturated soils modified basic Barcelona model(BBM) numerical analysis rainfall infiltration model slope
下载PDF
Bearing capacity of foundation on slope determined by energy dissipation method and model experiments 被引量:15
2
作者 杨小礼 王志斌 +1 位作者 邹金锋 李亮 《Journal of Central South University of Technology》 EI 2007年第1期125-128,共4页
To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the bearing capacity as programming problem, and full-scale model experi... To determine the ultimate bearing capacity of foundations on sloping ground surface in practice, energy dissipation method was used to formulate the bearing capacity as programming problem, and full-scale model experiments were investigated to analyze the performance of the soil slopes loaded by a strip footing in laboratory. The soil failure is governed by a linear Mohr-Coulomb yield criterion, and soil deformation follows an associated flow rule. Based on the energy dissipation method of plastic mechanics, a multi-wedge translational failure mechanism was employed to obtain the three bearing capacity factors related to cohesion, equivalent surcharge load and the unit gravity for various slope inclination angles. Numerical results were compared with those of the published solutions using finite element method and those of model experiments. The bearing capacity factors were presented in the form of design charts for practical use in engineering. The results show that limit analysis solutions approximate to those of model tests, and that the energy dissipation method is effective to estimate bearing capacity of soil slope. 展开更多
关键词 能量消耗 轴承方位 土壤 模型实验
下载PDF
Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil 被引量:5
3
作者 Lana Milene Sabino 《International Journal of Mining Science and Technology》 SCIE EI 2014年第6期777-782,共6页
This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrilá-tero Ferrífero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. ... This paper presents three case studies comprising failure mechanisms in phyllite mine slopes at Quadrilá-tero Ferrífero, State of Minas Gerais, Brazil. Numerical modeling techniques were used in this study. Failure mechanisms involving discontinuities sub parallel to the main foliation are very common in these mines. Besides, failure through the rock material has also been observed due to the low strength of phyllites in this site. Results of this work permitted to establish unknown geotechnical parameters which have significant influence in failure processes, like the in situ stress field and the discontinuity stiffness. 展开更多
关键词 数值模拟技术 失效机理 千枚岩 煤矿 巴西 材料破坏 破坏过程 岩土参数
下载PDF
Applications of A Numerical Model to Wave Propagation on Mild Slopes 被引量:3
4
作者 Asu INAN Lale BALAS 《China Ocean Engineering》 SCIE EI 2002年第4期569-576,共8页
Based on the mild slope equation that has heen deeomposed inlo three equations related to wave phase function, wave amplitude and wave approach angle, a refraction-diffraction model is developed. The finite difference... Based on the mild slope equation that has heen deeomposed inlo three equations related to wave phase function, wave amplitude and wave approach angle, a refraction-diffraction model is developed. The finite difference method has been selected as the solution method. The model results are compared with experimental results and the model is applied to coastal waters of the Fethiye Bay, whieh is located at the Mediterranean Sea of Turkey. 展开更多
关键词 numerical model wave propagation mild slope refraction-difjraction
下载PDF
Facets of Uncertainty in Digital Elevation and Slope Modeling 被引量:1
5
作者 ZHANG Jingxiong LI Deren 《Geo-Spatial Information Science》 2005年第3期163-170,共8页
This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the la... This paper investigates the differences that result from applying different approaches to uncertainty modeling and reports an experimental examining error estimation and propagation in elevation and slope, with the latter derived from the former. It is confirmed that significant differences exist between uncertainty descriptors, and propagation of uncertainty to end products is immensely affected by the specification of source uncertainty. 展开更多
关键词 DEMS 数字高程模型 斜面模型 误差 测绘工作
下载PDF
Analog modeling of sand slope stability with different precipitation conditions 被引量:1
6
作者 Tangjin Ye Qiang Xie +2 位作者 Ying Wang Yang An Jiang Jin 《Journal of Modern Transportation》 2018年第3期200-208,共9页
Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiatio... Water–sand flow triggered by rainfall is the dominant mechanism for instability and failure of sand slopes. To further analyze the stability state of sand on a slope under different rainfall conditions, the initiation conditions and flow characteristics of water–sand flows are studied. Based on the theory of equilibrium forces and hydrological dynamics, a 1:100-scale analog model is built and verified with field observation data. The results indicate three dynamic stabilization stages of the sand slope under different weather conditions: dry sand, wet sand, and water–sand flow. Water–sand flows are triggered easilyunder short duration and heavy rainfall conditions. The rainfall threshold required to initiate water–sand flow is 4.14 mm/h. Rainfall amount and duration required to initiate water–sand flow decrease with fine sand content increasing. A sand head that develops at the front of the water–sand flow results in a flow along the edge of the sand debris flow and a ‘‘tree root’’ flow morphology. Modelingresults are consistent with theoretical analysis and field observations. 展开更多
关键词 PRECIPITATION Analog modeling Sand slope Water–sand flow Stability
下载PDF
Effectiveness of Fiber Bragg Grating monitoring in the centrifugal model test of soil slope under rainfall conditions 被引量:3
7
作者 LI Long-qi JU Neng-pan GUO Yong-xing 《Journal of Mountain Science》 SCIE CSCD 2017年第5期936-947,共12页
Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model test... Centrifugal model testsare playing an increasingly importantrolein investigating slope characteristics under rainfall conditions. However, conventional electronic transducers usually fail during centrifugal model tests because of the impacts of limitedtest space, high centrifugal force, and presence of water, with the result that limited valid data is obtained. In this study, Fiber Bragg Grating(FBG) sensing technology is employed in the design and development of displacement gauge, an anchor force gauge and an anti-slide pile moment gauge for use on centrifugal model slopes with and without a retaining structure. The two model slopes were installed and monitored at a centrifugal acceleration of 100 g. The test results show that the sensors developed succeed in capturing the deformation and retaining structure mechanical response of the model slopes during and after rainfall. The deformation curvefor the slope without retaining structure shows a steepresponse that turns gradualfor the slope with retaining structure. Importantly, for the slope with the retaining structure, results suggest that more attention be paid to increase of anchor force and antislide pile moment during rainfall. This study verifies the effectiveness of FBG sensing technology in centrifuge research and presents a new and innovative method for slope model testing under rainfall conditions. 展开更多
关键词 Fiber Bragg Grating sensing technology Centrifugal model test Soil slope Rainfall conditions slope displacement
下载PDF
Failure behavior of soil-rock mixture slopes based on centrifuge model test 被引量:3
8
作者 WANG Teng ZHANG Ga 《Journal of Mountain Science》 SCIE CSCD 2019年第8期1928-1942,共15页
The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading condi... The stability of soil-rock mixtures(SRMs) that widely distributed in slopes is of significant concern for slope safety evaluation and disaster prevention. The failure behavior of SRM slopes under surface loading conditions was investigated through a series of centrifuge model tests considering various volumetric gravel contents. The displacement field of the slope was determined with image-based displacement system to observe the deformation of the soil and the movement of the block during loading in the tests. The test results showed that the ultimate bearing capacity and the stiffness of SRM slopes increased evidently when the volumetric block content exceeded a threshold value. Moreover, there were more evident slips around the blocks in the SRM slope. The microscopic analysis of the block motion showed that the rotation of the blocks could aggravate the deformation localization to facilitate the development of the slip surface. The high correlation between the rotation of the key blocks and the slope failure indicated that the blocks became the dominant load-bearing medium that influenced the slope failure. The blocks in the sliding body formed a chain to bear the load and change the displacement distribution of the adjacent matrix sand through the block rotation. 展开更多
关键词 Soil ROCK MIXTURE slope stability slope FAILURE CENTRIFUGE model test
下载PDF
Slope stability assessment of an open pit using lattice-spring-based synthetic rock mass (LS-SRM) modeling approach
9
作者 Subash Bastola Ming Cai Branko Damjanac 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第5期927-942,共16页
Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most ex... Discontinuity waviness is one of the most important properties that influence shear strength of jointed rock masses,and it should be incorporated into numerical models for slope stability assessment.However,in most existing numerical modeling tools,discontinuities are often simplified into planar surfaces.Discrete fracture network modeling tools such as MoFrac allow the simulation of non-planar discontinuities which can be incorporated into lattice-spring-based geomechanical software such as Slope Model for slope stability assessment.In this study,the slope failure of the south wall at Cadia Hill open pit mine is simulated using the lattice-spring-based synthetic rock mass(LS-SRM)modeling approach.First,the slope model is calibrated using field displacement monitoring data,and then the influence of different discontinuity configurations on the stability of the slope is investigated.The modeling results show that the slope with non-planar discontinuities is comparatively more stable than the ones with planar discontinuities.In addition,the slope becomes increasingly unstable with the increases of discontinuity intensity and size.At greater pit depth with higher in situ stress,both the slope models with planar and non-planar discontinuities experience localized failures due to very high stress concentrations,and the slope model with planar discontinuities is more deformable and less stable than that with non-planar discontinuities. 展开更多
关键词 Lattice-spring-based synthetic rock mass (LS-SRM)modeling Non-planar discontinuities slope stability slope model Discrete fracture network(DFN)modeling
下载PDF
Uncertainty of Slope Length Derived from Digital Elevation Models of the Loess Plateau, China 被引量:7
10
作者 ZHU Shi-jie TANG Guo-an +1 位作者 XIONG Li-yang ZHANG Gang 《Journal of Mountain Science》 SCIE CSCD 2014年第5期1169-1181,共13页
Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availab... Although many studies have investigated slope gradient uncertainty derived from Digital Elevation Models(DEMs), the research concerning slope length uncertainty is far from mature. This discrepancy affects the availability and accuracy of soil erosion as well as hydrological modeling. This study investigates the formation and distribution of existing errors and uncertainties in slope length derivation based on 5-m resolution DEMs of the Loess Plateau in the middle of China. The slope length accuracy in three different landform areas is examined to analyse algorithm effects. The experiments indicate that the accuracy of the flat test area is lower than that of the rougher areas. The value from the specific contributing area(SCA) method is greater than the cumulative slope length(CSL), and the differences between these two methods arise from the shape of the upslope area. The variation of mean slope length derived from various DEM resolutions and landforms. The slope length accuracy decreases with increasing grid size and terrain complexity at the six test sites. A regression model is built to express the relationship of mean slope length with DEM resolution less than 85 m and terrain complexity represented by gully density. The results support the understanding of the slope length accuracy, thereby aiding in the effective evaluation of the modeling effect of surface process. 展开更多
关键词 数字高程模型 不确定性 黄土高原 坡长 中国 地形复杂性 DEM 分辨率
下载PDF
Slope wavenumber spectrum models of capillary and capillary-gravity waves 被引量:1
11
作者 贾永君 张杰 王岩峰 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2010年第2期359-363,共5页
Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But s... Capillary and capillary-gravity waves possess a random character, and the slope wavenumber spectra of them can be used to represent mean distributions of wave energy with respect to spatial scale of variability. But simple and practical models of the slope wavenumber spectra have not been put forward so far. In this article, we address the accurate definition of the slope wavenumber spectra of water surface capillary and capillary-gravity waves. By combining the existing slope wavenumber models and using the dispersion relation of water surface waves, we derive the slope wavenumber spectrum models of capillary and capillary-gravity waves. Simultaneously, by using the slope wavenumber models, the dependence of the slope wavenumber spectrum on wind speed is analyzed using data obtained in an experiment which was performed in a laboratory wind wave tank. Generally speaking, the slope wavenumber spectra are influenced profoundly by the wind speed above water surface. The slope wavenumber spectrum increases with wind speed obviously and do not cross each other for different wind speeds. But, for the same wind speed, the slope wavenumber spectra are essentially identical, even though the capillary and capillary-gravity waves are excited at different times and locations. Furthermore, the slope wavenumber spectra obtained from the models agree quite well with experimental results as regards both the values and the shape of the curve. 展开更多
关键词 毛细血管 波数谱 模型 和毛 重力波 毛细管电泳 频谱 边坡
下载PDF
Constitutive models in stability analysis of rock slope
12
作者 言志信 段建 王后裕 《Journal of Central South University》 SCIE EI CAS 2008年第S1期302-306,共5页
Equivalent Mohr-Coulomb yield criterion was established,and the relationship between different constitutive models was studied.The application of equivalent Mohr-Coulomb yield criterion in Ansys was achieved by means ... Equivalent Mohr-Coulomb yield criterion was established,and the relationship between different constitutive models was studied.The application of equivalent Mohr-Coulomb yield criterion in Ansys was achieved by means of transforming material parameters.The stability research aiming at the most common rock slope without conspicuous slide surface was accomplished,the methods of measurably assessing the stability of rock slope without conspicuous slide surface were explored,and the disadvantages of method of minimum slide-resisted reserve as dangerous slide path were pointed out.The results show that through the calculation and analysis of cases,the conception that measurable assessment of the stability of rock slope without conspicuous slide surface can be achieved under condition that equivalent Mohr-Coulomb yield criterion is validated.Its safety parameter formula is explicit in theory and credible in results.The results obtained are approximate to those obtained by using finite element intensity reducing method. 展开更多
关键词 EQUIVALENT MOHR-COULOMB YIELD CRITERION CONSTITUTIVE model rock slope safety parameter
下载PDF
Numerical method of slope failure probability based on Bishop model 被引量:3
13
作者 苏永华 赵明华 张月英 《Journal of Central South University of Technology》 EI 2008年第1期100-105,共6页
Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced acc... Based on Bishop's model and by applying the first and second order mean deviations method, an approximative solution method for the first and second order partial derivatives of functional function was deduced according to numerical analysis theory. After complicated multi-independent variables implicit functional function was simplified to be a single independent variable implicit function and rule of calculating derivative for composite function was combined with principle of the mean deviations method, an approximative solution format of implicit functional function was established through Taylor expansion series and iterative solution approach of reliability degree index was given synchronously. An engineering example was analyzed by the method. The result shows its absolute error is only 0.78% as compared with accurate solution. 展开更多
关键词 斜坡 力学模型 失效概率 平均偏差法
下载PDF
Stability analysis of unsaturated soil slope during rainfall infiltration using coupled liquid-gas-solid three-phase model 被引量:12
14
作者 Dong-mei Sun Xiao-min Li +1 位作者 Ping Feng Yong-ge Zang 《Water Science and Engineering》 EI CAS CSCD 2016年第3期183-194,共12页
Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loos... Generally, most soil slope failures are induced by rainfall infiltration, a process that involves interactions between the liquid phase, gas phase,and solid skeleton in an unsaturated soil slope. In this study, a loosely coupled liquid-gas-solid three-phase model, linking two numerical codes,TOUGH2/EOS3, which is used for water-air two-phase flow analysis, and FLAC^(3D), which is used for mechanical analysis, was established. The model was validated through a documented water drainage experiment over a sandy column and a comparison of the results with measured data and simulated results from other researchers. The proposed model was used to investigate the features of water-air two-phase flow and stress fields in an unsaturated soil slope during rainfall infiltration. The slope stability analysis was then performed based on the simulated water-air two-phase seepage and stress fields on a given slip surface. The results show that the safety factor for the given slip surface decreases first, then increases, and later decreases until the rainfall stops. Subsequently, a sudden rise occurs. After that, the safety factor decreases continually and reaches its lowest value, and then increases slowly to a steady value. The lowest value does not occur when the rainfall stops, indicating a delayed effect of the safety factor. The variations of the safety factor for the given slip surface are therefore caused by a combination of pore-air pressure, matric suction, normal stress, and net normal stress. 展开更多
关键词 COUPLED liquid-gas-solid three-phase model Pore-air pressure UNSATURATED soil slope stability Rainfall INFILTRATION
下载PDF
Calibration of Numerical Model Applied to a Shear Zone Located on a Slope in an Open Pit Mine—Case History
15
作者 Evandro Moraes da Gama Bruno C. R. da Silva 《Geomaterials》 2012年第1期10-18,共9页
The instability of a pit mine slope diagnostic caused by the slipping of a localized deep shear zone is described. The slope was designed on ultra basic, serpentine and metabasite rock formations with an angle varying... The instability of a pit mine slope diagnostic caused by the slipping of a localized deep shear zone is described. The slope was designed on ultra basic, serpentine and metabasite rock formations with an angle varying from 40 to 45 de- grees. The perturbed slope zone was classified as RMR 12 and the non-perturbed zone as RMR 75. The boundary of these zones is defined as the shear zone. The pit slope was field mapped in detail and the mechanical properties of the rock were obtained through a laboratory test. The lab data were further processed using the RMR mechanical classifi- cation system. The Distinct Elements Code numerical modeling and simulation software was used to design the pit slope. The model was calibrated through topographic mapping of the points on the ground. The task of calibrating a numerical model is far from simple. Exhaustive attempts to find points of reference are required. The mechanical be- havior in function of the time factor is a problem that has yet to be solved. The instant deformation generated in the numerical model generated functions that can be compared with the deformations of quick shifts acquired in the topog- raphic monitoring. SMR is indeed more often recommended for Pit Slopes, though the fact that we have used RMR does not invalidate the classification for the modeling effect. The main parameters such as spacing, filling, diving direc- tion and continuity allow for compartmentalization of the modeled area. The objective of the modeling was not to pro- ject slopes because this massif was undergoing a progressive slow rupture. The objective of the modeling was to study the movement of the mass of rock and its progressive rupture caused by a shear zone. 展开更多
关键词 Calibrated modeling SHEAR ZONE slope and Stability
下载PDF
A Test Model of Water Pressures within a Fault in Rock Slope
16
作者 Yang Tong Wang Baoxue Hu Heng Civil and Environmental Engineering School, Beijing Institute of Technology , Beijing 100083 《Journal of China University of Geosciences》 SCIE CSCD 2001年第4期309-311,共3页
This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function,... This paper introduces model test results of water pressure in a fault, which is located in a slope and 16 different conditions. The results show that the water pressures in fault can be expressed by a linear function, which is similar to the theoretical model suggested by Hoek. Factors affecting water pressures are water level in tension crack, dip angle of fault, the height of filling materials and thickness of fault zone in sequence. 展开更多
关键词 rock slope water pressure model test.
下载PDF
STRUCTURAL DAMAGE MODEL OF UNSATURATED EXPANSIVE SOIL AND ITS APPLICATION IN MULTI-FIELD COUPLE ANALYSIS ON EXPANSIVE SOIL SLOPE
17
作者 卢再华 陈正汉 +2 位作者 方祥位 郭剑峰 周海清 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第7期891-900,共10页
Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soi... Focused on the sensitivity to climate change and the special mechanical characteristics of undisturbed expansive soil, an elasto-plastic damage constitutive model was proposed based on the mechanics of unsaturated soil and the mechanics of damage. Undisturbed expansive soil was considered as a compound of non-damaged part and damaged part. The behavior of the non-damaged part was described using non-linear constitutive model of unsaturated soil. The property of the damaged part was described using a damage evolution equation and two yield surfaces, i.e., loading yield (LY) and shear yield (SY). Furthermore, a consolidation model for unsaturated undisturbed expansive soil was established and a FEM program named UESEPDC was designed. Numerical analysis on solid-liquid-gas tri-phases and multi-field couple problem was conducted for four stages and fields of stress, displacement, pore water pressure, pore air pressure, water content, suction, and the damage region as well as plastic region in an expansive soil slope were obtained. 展开更多
关键词 unsaturated expansive soil elasto-plastic damage constitutive model CONSOLIDATION soil slope RAINING EVAPORATING numerical analysis
下载PDF
Numerical Modeling of the Hyperbolic Mild-Slope Equation in Curvilinear Coordinates 被引量:4
18
作者 佟飞飞 沈永明 +1 位作者 唐军 崔雷 《China Ocean Engineering》 SCIE EI 2010年第4期585-596,共12页
The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccur... The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccurate in areas with irregular shorelines, such as estuaries and harbors. Based on the hyperbolic mild-slope equation in Cartesian coordinates, the numerical model in orthogonal curvilinear coordinates is developed. The transformed model is discretized by the finite difference method and solved by the ADI method with space-staggered grids. The numerical predictions in curvilinear co- ordinates show good agreemenl with the data obtained in three typical physical expedments, which demonstrates that the present model can be used to simulate wave propagation, for normal incidence and oblique incidence, in domains with complicated topography and boundary conditions. 展开更多
关键词 mild-slope equation curvilinear coordinates water propagation numerical modeling
下载PDF
A gravity similitude model for studying steep rock slopes
19
作者 张永兴 FAN Zebao 《Journal of Chongqing University》 CAS 2002年第2期31-33,共3页
A method of a large experimental model coupled with a smaller one and an equivalent replacement method are adopted to study the deformation and the failure mechanism of a steep rock slope, in order to solve the diffic... A method of a large experimental model coupled with a smaller one and an equivalent replacement method are adopted to study the deformation and the failure mechanism of a steep rock slope, in order to solve the difficult problems in space gravity similitude of the experimental model on steep rock slope with weak layers. The experimental results on the Lianziya Precipice of the Yangtze Three Gorges are in general agreement with the field observations. The experimental method adopted is proved to be successful in molding the complex geological condition especially with the weak layers. 展开更多
关键词 陡峭岩石边坡 重力相似模型 重力模拟 边坡稳定性
下载PDF
Early warning model for slope debris flow initiation 被引量:4
20
作者 LI Ming-li JIANG Yuan-jun +3 位作者 YANG Tao HUANG Qiang-bing QIAO Jian-ping YANG Zong-ji 《Journal of Mountain Science》 SCIE CSCD 2018年第6期1342-1353,共12页
Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the ... Early warning model of debris flow is important for providing local residents with reliable and accurate warning information to escape from debris flow hazards. This research studied the debris flow initiation in the Yindongzi gully in Dujiangyan City, Sichuan province, China with scaled-down model experiments. We set rainfall intensity and slope angle as dominating parameters and carried out 20 scaled-down model tests under artificial rainfall conditions. The experiments set four slope angles(32°, 34°, 37°, 42°) and five rainfall intensities(60 mm/h, 90 mm/h, 120 mm/h, 150 mm/h, and 180 mm/h) treatments. The characteristic variables in the experiments, such as, rainfall duration, pore water pressure, moisture content, surface inclination, and volume were monitored. The experimental results revealed the failure mode of loose slope material and the process of slope debris flow initiation, as well as the relationship between the surface deformation and the physical parameters of experimental model. A traditional rainfall intensity-duration early warning model(I-D model) was firstly established by using a mathematical regression analysis, and it was then improved into ISD model and ISM model(Here, I is rainfall Intensity, S is Slope angle, D is rainfall Duration, and M is Moisture content). The warning model can provide reliable early warning of slope debris flow initiation. 展开更多
关键词 模型实验 流动 降雨条件 持续时间 表面倾斜 模型测试 典型变量 物理参数
下载PDF
上一页 1 2 156 下一页 到第
使用帮助 返回顶部