Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention ...Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.展开更多
Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an impor...Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an important avenue for prevention and treatment of integrated Chinese and Western medicine. The idea here is first to divide all patients suffering from a disease of WM into several groups in the light of the stage of the disease, and secondly to identify basic syndromes feature in a distinct stage, and finally to achieve the purpose of syndrome differentiation. Syndrome differentiation is simply taken as a classifier that classifies patients into distinct classes primarily based on overall observation of their symptoms. Previous clustering methods are unable to cope with the complexity of CM. We therefore show a new multi-dimensional clustering method in the form of general latent structure (GLS) model, which is a suitable statistical learning technique of latent class analysis. In this paper, we learn an optimal GLS model which reflects much better model quality compared with other latent class models from the osteoporosis patient of community women (OPCW) real data including 40 65 year old women whose bone mineral density (BMD) is less than mean2.0 standard deviation (M 2.0SD). Further, we illustrate a case analysis of statistical identification of CM syndromes feature and structure of OPCW from qualitative and quantitative contents through the GLS model. Our analysis has discovered natural clusters and structures that correspond well to CM basic syndrome and factors of osteoporosis patients (OP). The GLS model suggests the possibility of establishing objective and quantitative diagnosis standards for syndrome differentiation on OPCW. Hence, for the future it can provide a reference for the similar study from the perspective of a combination of disease differentiation and syndrome differentiation.展开更多
基金Supported by National Key Technology R&D Program of Ministry of Science and Technology of China(Grant No.2013BAG14B01)
文摘Since the main power source of hybrid electric vehicle(HEV) is supplied by the power battery,the predicted performance of power battery,especially the state-of-charge(SOC) estimation has attracted great attention in the area of HEV.However,the value of SOC estimation could not be greatly precise so that the running performance of HEV is greatly affected.A variable structure extended kalman filter(VSEKF)-based estimation method,which could be used to analyze the SOC of lithium-ion battery in the fixed driving condition,is presented.First,the general lower-order battery equivalent circuit model(GLM),which includes column accumulation model,open circuit voltage model and the SOC output model,is established,and the off-line and online model parameters are calculated with hybrid pulse power characteristics(HPPC) test data.Next,a VSEKF estimation method of SOC,which integrates the ampere-hour(Ah) integration method and the extended Kalman filter(EKF) method,is executed with different adaptive weighting coefficients,which are determined according to the different values of open-circuit voltage obtained in the corresponding charging or discharging processes.According to the experimental analysis,the faster convergence speed and more accurate simulating results could be obtained using the VSEKF method in the running performance of HEV.The error rate of SOC estimation with the VSEKF method is focused in the range of 5% to 10% comparing with the range of 20% to 30% using the EKF method and the Ah integration method.In Summary,the accuracy of the SOC estimation in the lithium-ion battery cell and the pack of lithium-ion battery system,which is obtained utilizing the VSEKF method has been significantly improved comparing with the Ah integration method and the EKF method.The VSEKF method utilizing in the SOC estimation in the lithium-ion pack of HEV can be widely used in practical driving conditions.
基金Supported by Items of Institute of Basic Research in Clinical Medicine,China Academy of Chinese Medical Sciences Natural Science Fundation(No.30873339)
文摘Syndrome differentiation is the character of Chinese medicine (CM). Disease differentiation is the principle of Western medicine (WM). Identifying basic syndromes feature and structure of disease of WM is an important avenue for prevention and treatment of integrated Chinese and Western medicine. The idea here is first to divide all patients suffering from a disease of WM into several groups in the light of the stage of the disease, and secondly to identify basic syndromes feature in a distinct stage, and finally to achieve the purpose of syndrome differentiation. Syndrome differentiation is simply taken as a classifier that classifies patients into distinct classes primarily based on overall observation of their symptoms. Previous clustering methods are unable to cope with the complexity of CM. We therefore show a new multi-dimensional clustering method in the form of general latent structure (GLS) model, which is a suitable statistical learning technique of latent class analysis. In this paper, we learn an optimal GLS model which reflects much better model quality compared with other latent class models from the osteoporosis patient of community women (OPCW) real data including 40 65 year old women whose bone mineral density (BMD) is less than mean2.0 standard deviation (M 2.0SD). Further, we illustrate a case analysis of statistical identification of CM syndromes feature and structure of OPCW from qualitative and quantitative contents through the GLS model. Our analysis has discovered natural clusters and structures that correspond well to CM basic syndrome and factors of osteoporosis patients (OP). The GLS model suggests the possibility of establishing objective and quantitative diagnosis standards for syndrome differentiation on OPCW. Hence, for the future it can provide a reference for the similar study from the perspective of a combination of disease differentiation and syndrome differentiation.