BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still...BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.展开更多
As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical sys...As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.展开更多
BACKGROUND Cirrhotic patients with acute-on-chronic liver failure(ACLF)in the intensive care unit(ICU)have a poor but variable prognoses.Accurate prognosis evaluation can guide the rational management of patients with...BACKGROUND Cirrhotic patients with acute-on-chronic liver failure(ACLF)in the intensive care unit(ICU)have a poor but variable prognoses.Accurate prognosis evaluation can guide the rational management of patients with ACLF.However,existing prognostic scores for ACLF in the ICU environment lack sufficient accuracy.AIM To develop a new prognostic model for patients with ACLF in ICU.METHODS Data from 938 ACLF patients in the Medical Information Mart for Intensive Care(MIMIC)database were used to develop a new prognostic model(MIMIC ACLF)for ACLF.Discrimination,calibration and clinical utility of MIMIC ACLF were assessed by area under receiver operating characteristic curve(AUROC),calibration curve and decision curve analysis(DCA),respectively.MIMIC ACLF was then externally validated in a multiple-center cohort,the Electronic Intensive Care Collaborative Research Database and a single-center cohort from the Second Hospital of Hebei Medical University in China.RESULTS The MIMIC ACLF score was determined using nine variables:ln(age)×2.2+ln(white blood cell count)×0.22-ln(mean arterial pressure)×2.7+respiratory failure×0.6+renal failure×0.51+cerebral failure×0.31+ln(total bilirubin)×0.44+ln(internationalized normal ratio)×0.59+ln(serum potassium)×0.59.In MIMIC cohort,the AUROC(0.81/0.79)for MIMIC ACLF for 28/90-day ACLF mortality were significantly greater than those of Chronic Liver Failure Consortium ACLF(0.76/0.74),Model for End-stage Liver Disease(MELD;0.73/0.71)and MELD-Na(0.72/0.70)(all P<0.001).The consistency between actual and predicted 28/90-day survival rates of patients according to MIMIC ACLF score was excellent and superior to that of existing scores.The net benefit of MIMIC ACLF was greater than that achieved using existing scores within the 50%threshold probability.The superior predictive accuracy and clinical utility of MIMIC ACLF were validated in the external cohorts.CONCLUSION We developed and validated a new prognostic model with satisfactory accuracy for cirrhotic patients with ACLF hospitalized in the ICU.The model-based risk stratification and online calculator might facilitate the rational management of patients with ACLF.展开更多
To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dime...To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.展开更多
BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,ofte...BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.展开更多
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r...BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.展开更多
BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their assoc...BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.展开更多
BACKGROUND Peripherally inserted central catheters(PICCs)are commonly used in hospitalized patients with liver cancer for the administration of chemotherapy,nutrition,and other medications.However,PICC-related thrombo...BACKGROUND Peripherally inserted central catheters(PICCs)are commonly used in hospitalized patients with liver cancer for the administration of chemotherapy,nutrition,and other medications.However,PICC-related thrombosis is a serious complication that can lead to morbidity and mortality in this patient population.Several risk factors have been identified for the development of PICC-related thrombosis,including cancer type,stage,comorbidities,and catheter characteristics.Understanding these risk factors and developing a predictive model can help healthcare providers identify high-risk patients and implement preventive measures to reduce the incidence of thrombosis.AIM To analyze the influencing factors of PICC-related thrombosis in hospitalized patients with liver cancer,construct a predictive model,and validate it.METHODS Clinical data of hospitalized patients with liver cancer admitted from January 2020 to December 2023 were collected.Thirty-five cases of PICC-related thrombosis in hospitalized patients with liver cancer were collected,and 220 patients who underwent PICC placement during the same period but did not develop PICC-related thrombosis were randomly selected as controls.A total of 255 samples were collected and used as the training set,and 77 cases were collected as the validation set in a 7:3 ratio.General patient information,case data,catheterization data,coagulation indicators,and Autar Thrombosis Risk Assessment Scale scores were analyzed.Univariate and multivariate unconditional logistic regression analyses were performed on relevant factors,and the value of combined indicators in predicting PICC-related thrombosis in hospitalized patients with liver cancer was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Univariate analysis showed statistically significant differences(P<0.05)in age,sex,Karnofsky performance status score(KPS),bedridden time,activities of daily living impairment,parenteral nutrition,catheter duration,distant metastasis,and bone marrow suppression between the thrombosis group and the non-thrombosis group.Other aspects had no statistically significant differences(P>0.05).Multivariate regression analysis showed that age≥60 years,KPS score≤50 points,parenteral nutrition,stage III to IV,distant metastasis,bone marrow suppression,and activities of daily living impairment were independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer(P<0.05).Catheter duration of 1-6 months and catheter duration>6 months were protective factors for PICC-related thrombosis(P<0.05).The predictive model for PICC-related thrombosis was obtained as follows:P predictive probability=[exp(Logit P)]/[1+exp(Logit P)],where Logit P=age×1.907+KPS score×2.045+parenteral nutrition×9.467+catheter duration×0.506+tumor-node-metastasis(TNM)staging×2.844+distant metastasis×2.065+bone marrow suppression×2.082+activities of daily living impairment×13.926.ROC curve analysis showed an area under the curve(AUC)of 0.827(95%CI:0.724-0.929,P<0.001),with a corresponding optimal cut-off value of 0.612,sensitivity of 0.755,and specificity of 0.857.Calibration curve analysis showed good consistency between the predicted occurrence of PICC-related thrombosis and actual occurrence(P>0.05).ROC analysis showed AUCs of 0.888 and 0.729 for the training and validation sets,respectively.CONCLUSION Age,KPS score,parenteral nutrition,TNM staging,distant metastasis,bone marrow suppression,and activities of daily living impairment are independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer,while catheter duration is a protective factor for the disease.The predictive model has an AUC of 0.827,indicating high predictive accuracy and clinical value.展开更多
BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the ris...BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the risk factors for post-colon polyp surgery,H.pylori infection,and its correlation with pathologic type.METHODS Eighty patients who underwent colon polypectomy in our hospital between January 2019 and January 2023 were retrospectively chosen.They were then randomly split into modeling(n=56)and model validation(n=24)sets using R.The modeling cohort was divided into an H.pylori-infected group(n=37)and an H.pylori-uninfected group(n=19).Binary logistic regression analysis was used to analyze the factors influencing the occurrence of H.pylori infection after colon polyp surgery.A roadmap prediction model was established and validated.Finally,the correlation between the different pathological types of colon polyps and the occurrence of H.pylori infection was analyzed after colon polyp surgery.RESULTS Univariate results showed that age,body mass index(BMI),literacy,alcohol consumption,polyp pathology type,high-risk adenomas,and heavy diet were all influential factors in the development of H.pylori infection after intestinal polypectomy.Binary multifactorial logistic regression analysis showed that age,BMI,and type of polyp pathology were independent predictors of the occurrence of H.pylori infection after intestinal polypectomy.The area under the receiver operating characteristic curve was 0.969[95%confidence interval(95%CI):0.928–1.000]and 0.898(95%CI:0.773–1.000)in the modeling and validation sets,respectively.The slope of the calibration curve of the graph was close to 1,and the goodness-of-fit test was P>0.05 in the two sets.The decision analysis curve showed a high rate of return in both sets.The results of the correlation analysis between different pathological types and the occurrence of H.pylori infection after colon polyp surgery showed that hyperplastic polyps,inflammatory polyps,and the occurrence of H.pylori infection were not significantly correlated.In contrast,adenomatous polyps showed a significant positive correlation with the occurrence of H.pylori infection.CONCLUSION Age,BMI,and polyps of the adenomatous type were independent predictors of H.pylori infection after intestinal polypectomy.Moreover,the further constructed column-line graph prediction model of H.pylori infection after intestinal polypectomy showed good predictive ability.展开更多
Objective: Our study aims to validate the subjective Bayes mathematical model using the mathematical model of logistic regression. Expert systems are being utilized increasingly in medical fields for the purposes of a...Objective: Our study aims to validate the subjective Bayes mathematical model using the mathematical model of logistic regression. Expert systems are being utilized increasingly in medical fields for the purposes of assisting diagnosis and treatment planning in Dentistry. Existing systems used few symptoms for dental diagnosis. In Dentistry, few symptoms are not enough for diagnosis. In this research, a conditional probability model (Bayes rule) was developed with increased number of symptoms associated with a disease for diagnosis. A test set of recurrent cases was then used to test the diagnostic capacity of the system. The generated diagnosis matched that of the human experts. The system was also tested for its capacity to handle uncommon dental diseases and the system portrayed useful potential. Method: The study used the Subjective Mathematical Bayes Model (SBM) approach and employed Logistic Regression Mathematical Model (LMR) techniques. The external validation of the subjective mathematical Bayes model (MSB) concerns the real cases of 625 patients who developed alveolar osteitis (OA). We propose strategies for reproducibility and reporting standards, outlining an updated WAMBS (when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist. Finally, we outline the impact of Bayesian analysis Logistic Regression Mathematical Model (LMR) techniques and on artificial intelligence, a major goal in the next decade. Results: The internal validation had identified seven (7) etiological factors of OA, which will be compared to the cases of MRL, for the external validation which retained six (6) etiological factors of OA. The experts in the internal validation of the MSB had generated 40 cases of OA and a COP of (0.5), which will be compared to the MRL that collected 625 real cases of OA to produce a Cop of (0.6) in the external validation, which discriminates between healthy patients (Se) and sick patients (Sp). Compared to real cases and the logistic regression model, the Bayesian model is efficient and its validity is established.展开更多
BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperati...BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning.展开更多
Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall su...Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall survival time of patients.This study aims to enhance the risk-assessment strategy for AL following gastrectomy for gastric cancer.Methods:This study included a derivation cohort and validation cohort.The derivation cohort included patients who underwent radical gastrectomy at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,from January 1,2015 to December 31,2020.An evidence-based predictor questionnaire was crafted through extensive literature review and panel discussions.Based on the questionnaire,inpatient data were collected to form a model-derivation cohort.This cohort underwent both univariate and multivariate analyses to identify factors associated with AL events,and a logistic regression model with stepwise regression was developed.A 5-fold cross-validation ensured model reliability.The validation cohort included patients from August 1,2021 to December 31,2021 at the same hospital.Using the same imputation method,we organized the validation-queue data.We then employed the risk-prediction model constructed in the earlier phase of the study to predict the risk of AL in the subjects included in the validation queue.We compared the predictions with the actual occurrence,and evaluated the external validation performance of the model using model-evaluation indicators such as the area under the receiver operating characteristic curve(AUROC),Brier score,and calibration curve.Results:The derivation cohort included 1377 patients,and the validation cohort included 131 patients.The independent predictors of AL after radical gastrectomy included age65 y,preoperative albumin<35 g/L,resection extent,operative time240 min,and intraoperative blood loss90 mL.The predictive model exhibited a solid AUROC of 0.750(95%CI:0.694e0.806;p<0.001)with a Brier score of 0.049.The 5-fold cross-validation confirmed these findings with a calibrated C-index of 0.749 and an average Brier score of 0.052.External validation showed an AUROC of 0.723(95%CI:0.564e0.882;p?0.006)and a Brier score of 0.055,confirming reliability in different clinical settings.Conclusions:We successfully developed a risk-prediction model for AL following radical gastrectomy.This tool will aid healthcare professionals in anticipating AL,potentially reducing unnecessary interventions.展开更多
BACKGROUND Acute pancreatitis(AP)is a disease caused by abnormal activation of pancreatic enzymes and can lead to self-digestion of pancreatic tissues and dysfunction of other organs.Enteral nutrition plays a vital ro...BACKGROUND Acute pancreatitis(AP)is a disease caused by abnormal activation of pancreatic enzymes and can lead to self-digestion of pancreatic tissues and dysfunction of other organs.Enteral nutrition plays a vital role in the treatment of AP because it can meet the nutritional needs of patients,promote the recovery of intestinal function,and maintain the barrier and immune functions of the intestine.However,the risk of aspiration during enteral nutrition is high;once aspiration occurs,it may cause serious complications,such as aspiration pneumonia,and suffocation,posing a threat to the patient’s life.This study aims to establish and validate a prediction model for enteral nutrition aspiration during hospitalization in patients with AP.AIM To establish and validate a predictive model for enteral nutrition aspiration during hospitalization in patients with AP.METHODS A retrospective review was conducted on 200 patients with AP admitted to Chengdu Shangjin Nanfu Hospital,West China Hospital of Sichuan University from January 2020 to February 2024.Clinical data were collected from the electronic medical record system.Patients were randomly divided into a validation group(n=40)and a modeling group(n=160)in a 1:4 ratio,matched with 200 patients from the same time period.The modeling group was further categorized into an aspiration group(n=25)and a non-aspiration group(n=175)based on the occurrence of enteral nutrition aspiration during hospitalization.Univariate and multivariate logistic regression analyses were performed to identify factors influencing enteral nutrition aspiration in patients with AP during hospitalization.A prediction model for enteral nutrition aspiration during hospitalization was constructed,and calibration curves were used for validation.Receiver operating characteristic curve analysis was conducted to evaluate the predictive value of the model.RESULTS There was no statistically significant difference in general data between the validation and modeling groups(P>0.05).The comparison of age,gender,body mass index,smoking history,hypertension history,and diabetes history showed no statistically significant difference between the two groups(P>0.05).However,patient position,consciousness status,nutritional risk,Acute Physiology and Chronic Health Evaluation(APACHE-II)score,and length of nasogastric tube placement showed statistically significant differences(P<0.05)between the two groups.Multivariate logistic regression analysis showed that patient position,consciousness status,nutritional risk,APACHE-II score,and length of nasogastric tube placement were independent factors influencing enteral nutrition aspiration in patients with AP during hospitalization(P<0.05).These factors were incorporated into the prediction model,which showed good consistency between the predicted and actual risks,as indicated by calibration curves with slopes close to 1 in the training and validation sets.Receiver operating characteristic analysis revealed an area under the curve(AUC)of 0.926(95%CI:0.8889-0.9675)in the training set.The optimal cutoff value is 0.73,with a sensitivity of 88.4 and specificity of 85.2.In the validation set,the AUC of the model for predicting enteral nutrition aspiration in patients with AP patients during hospitalization was 0.902,with a standard error of 0.040(95%CI:0.8284-0.9858),and the best cutoff value was 0.73,with a sensitivity of 91.9 and specificity of 81.8.CONCLUSION A prediction model for enteral nutrition aspiration during hospitalization in patients with AP was established and demonstrated high predictive value.Further clinical application of the model is warranted.展开更多
High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to ana...High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.展开更多
The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean ...The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting.展开更多
Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have ga...Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.展开更多
Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-const...Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.展开更多
In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity condi...In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error.展开更多
BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and const...BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.展开更多
Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism rem...Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.展开更多
基金Supported by the Project of NINGBO Leading Medical Health Discipline,No.2022-B11Ningbo Natural Science Foundation,No.202003N4206Public Welfare Foundation of Ningbo,No.2021S108.
文摘BACKGROUND Colorectal cancer(CRC)is a serious threat worldwide.Although early screening is suggested to be the most effective method to prevent and control CRC,the current situation of early screening for CRC is still not optimistic.In China,the incidence of CRC in the Yangtze River Delta region is increasing dramatically,but few studies have been conducted.Therefore,it is necessary to develop a simple and efficient early screening model for CRC.AIM To develop and validate an early-screening nomogram model to identify individuals at high risk of CRC.METHODS Data of 64448 participants obtained from Ningbo Hospital,China between 2014 and 2017 were retrospectively analyzed.The cohort comprised 64448 individuals,of which,530 were excluded due to missing or incorrect data.Of 63918,7607(11.9%)individuals were considered to be high risk for CRC,and 56311(88.1%)were not.The participants were randomly allocated to a training set(44743)or validation set(19175).The discriminatory ability,predictive accuracy,and clinical utility of the model were evaluated by constructing and analyzing receiver operating characteristic(ROC)curves and calibration curves and by decision curve analysis.Finally,the model was validated internally using a bootstrap resampling technique.RESULTS Seven variables,including demographic,lifestyle,and family history information,were examined.Multifactorial logistic regression analysis revealed that age[odds ratio(OR):1.03,95%confidence interval(CI):1.02-1.03,P<0.001],body mass index(BMI)(OR:1.07,95%CI:1.06-1.08,P<0.001),waist circumference(WC)(OR:1.03,95%CI:1.02-1.03 P<0.001),lifestyle(OR:0.45,95%CI:0.42-0.48,P<0.001),and family history(OR:4.28,95%CI:4.04-4.54,P<0.001)were the most significant predictors of high-risk CRC.Healthy lifestyle was a protective factor,whereas family history was the most significant risk factor.The area under the curve was 0.734(95%CI:0.723-0.745)for the final validation set ROC curve and 0.735(95%CI:0.728-0.742)for the training set ROC curve.The calibration curve demonstrated a high correlation between the CRC high-risk population predicted by the nomogram model and the actual CRC high-risk population.CONCLUSION The early-screening nomogram model for CRC prediction in high-risk populations developed in this study based on age,BMI,WC,lifestyle,and family history exhibited high accuracy.
基金Supported by National Natural Science Foundation of China (Grant No.52275537)Nanjing Major Scientific and Technological Project of China (Grant No.202209011)。
文摘As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.
文摘BACKGROUND Cirrhotic patients with acute-on-chronic liver failure(ACLF)in the intensive care unit(ICU)have a poor but variable prognoses.Accurate prognosis evaluation can guide the rational management of patients with ACLF.However,existing prognostic scores for ACLF in the ICU environment lack sufficient accuracy.AIM To develop a new prognostic model for patients with ACLF in ICU.METHODS Data from 938 ACLF patients in the Medical Information Mart for Intensive Care(MIMIC)database were used to develop a new prognostic model(MIMIC ACLF)for ACLF.Discrimination,calibration and clinical utility of MIMIC ACLF were assessed by area under receiver operating characteristic curve(AUROC),calibration curve and decision curve analysis(DCA),respectively.MIMIC ACLF was then externally validated in a multiple-center cohort,the Electronic Intensive Care Collaborative Research Database and a single-center cohort from the Second Hospital of Hebei Medical University in China.RESULTS The MIMIC ACLF score was determined using nine variables:ln(age)×2.2+ln(white blood cell count)×0.22-ln(mean arterial pressure)×2.7+respiratory failure×0.6+renal failure×0.51+cerebral failure×0.31+ln(total bilirubin)×0.44+ln(internationalized normal ratio)×0.59+ln(serum potassium)×0.59.In MIMIC cohort,the AUROC(0.81/0.79)for MIMIC ACLF for 28/90-day ACLF mortality were significantly greater than those of Chronic Liver Failure Consortium ACLF(0.76/0.74),Model for End-stage Liver Disease(MELD;0.73/0.71)and MELD-Na(0.72/0.70)(all P<0.001).The consistency between actual and predicted 28/90-day survival rates of patients according to MIMIC ACLF score was excellent and superior to that of existing scores.The net benefit of MIMIC ACLF was greater than that achieved using existing scores within the 50%threshold probability.The superior predictive accuracy and clinical utility of MIMIC ACLF were validated in the external cohorts.CONCLUSION We developed and validated a new prognostic model with satisfactory accuracy for cirrhotic patients with ACLF hospitalized in the ICU.The model-based risk stratification and online calculator might facilitate the rational management of patients with ACLF.
文摘To accelerate the practicality of electromagnetic railguns,it is necessary to use a combination of threedimensional numerical simulation and experiments to study the mechanism of bore damage.In this paper,a three-dimensional numerical model of the augmented railgun with four parallel unconventional rails is introduced to simulate the internal ballistic process and realize the multi-physics field coupling calculation of the rail gun,and a test experiment of a medium-caliber electromagnetic launcher powered by pulse formation network(PFN)is carried out.Various test methods such as spectrometer,fiber grating and high-speed camera are used to test several parameters such as muzzle initial velocity,transient magnetic field strength and stress-strain of rail.Combining the simulation results and experimental data,the damage condition of the contact surface is analyzed.
基金Supported by National Natural Science Foundation of China,No.82100581。
文摘BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.
文摘BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC.
基金Supported by the National Natural Science Foundation of China,No.81960100Applied Basic Foundation of Yunnan Province,No.202001AY070001-192+2 种基金Young and Middle-aged Academic and Technical Leaders Reserve Talents Program in Yunnan Province,No.202305AC160018Yunnan Revitalization Talent Support Program,No.RLQB20200004 and No.RLMY20220013and Yunnan Health Training Project of High-Level Talents,No.H-2017002。
文摘BACKGROUND Pyroptosis impacts the development of malignant tumors,yet its role in colorectal cancer(CRC)prognosis remains uncertain.AIM To assess the prognostic significance of pyroptosis-related genes and their association with CRC immune infiltration.METHODS Gene expression data were obtained from The Cancer Genome Atlas(TCGA)and single-cell RNA sequencing dataset GSE178341 from the Gene Expression Omnibus(GEO).Pyroptosis-related gene expression in cell clusters was analyzed,and enrichment analysis was conducted.A pyroptosis-related risk model was developed using the LASSO regression algorithm,with prediction accuracy assessed through K-M and receiver operating characteristic analyses.A nomo-gram predicting survival was created,and the correlation between the risk model and immune infiltration was analyzed using CIBERSORTx calculations.Finally,the differential expression of the 8 prognostic genes between CRC and normal samples was verified by analyzing TCGA-COADREAD data from the UCSC database.RESULTS An effective pyroptosis-related risk model was constructed using 8 genes-CHMP2B,SDHB,BST2,UBE2D2,GJA1,AIM2,PDCD6IP,and SEZ6L2(P<0.05).Seven of these genes exhibited differential expression between CRC and normal samples based on TCGA database analysis(P<0.05).Patients with higher risk scores demonstrated increased death risk and reduced overall survival(P<0.05).Significant differences in immune infiltration were observed between low-and high-risk groups,correlating with pyroptosis-related gene expression.CONCLUSION We developed a pyroptosis-related prognostic model for CRC,affirming its correlation with immune infiltration.This model may prove useful for CRC prognostic evaluation.
文摘BACKGROUND Peripherally inserted central catheters(PICCs)are commonly used in hospitalized patients with liver cancer for the administration of chemotherapy,nutrition,and other medications.However,PICC-related thrombosis is a serious complication that can lead to morbidity and mortality in this patient population.Several risk factors have been identified for the development of PICC-related thrombosis,including cancer type,stage,comorbidities,and catheter characteristics.Understanding these risk factors and developing a predictive model can help healthcare providers identify high-risk patients and implement preventive measures to reduce the incidence of thrombosis.AIM To analyze the influencing factors of PICC-related thrombosis in hospitalized patients with liver cancer,construct a predictive model,and validate it.METHODS Clinical data of hospitalized patients with liver cancer admitted from January 2020 to December 2023 were collected.Thirty-five cases of PICC-related thrombosis in hospitalized patients with liver cancer were collected,and 220 patients who underwent PICC placement during the same period but did not develop PICC-related thrombosis were randomly selected as controls.A total of 255 samples were collected and used as the training set,and 77 cases were collected as the validation set in a 7:3 ratio.General patient information,case data,catheterization data,coagulation indicators,and Autar Thrombosis Risk Assessment Scale scores were analyzed.Univariate and multivariate unconditional logistic regression analyses were performed on relevant factors,and the value of combined indicators in predicting PICC-related thrombosis in hospitalized patients with liver cancer was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Univariate analysis showed statistically significant differences(P<0.05)in age,sex,Karnofsky performance status score(KPS),bedridden time,activities of daily living impairment,parenteral nutrition,catheter duration,distant metastasis,and bone marrow suppression between the thrombosis group and the non-thrombosis group.Other aspects had no statistically significant differences(P>0.05).Multivariate regression analysis showed that age≥60 years,KPS score≤50 points,parenteral nutrition,stage III to IV,distant metastasis,bone marrow suppression,and activities of daily living impairment were independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer(P<0.05).Catheter duration of 1-6 months and catheter duration>6 months were protective factors for PICC-related thrombosis(P<0.05).The predictive model for PICC-related thrombosis was obtained as follows:P predictive probability=[exp(Logit P)]/[1+exp(Logit P)],where Logit P=age×1.907+KPS score×2.045+parenteral nutrition×9.467+catheter duration×0.506+tumor-node-metastasis(TNM)staging×2.844+distant metastasis×2.065+bone marrow suppression×2.082+activities of daily living impairment×13.926.ROC curve analysis showed an area under the curve(AUC)of 0.827(95%CI:0.724-0.929,P<0.001),with a corresponding optimal cut-off value of 0.612,sensitivity of 0.755,and specificity of 0.857.Calibration curve analysis showed good consistency between the predicted occurrence of PICC-related thrombosis and actual occurrence(P>0.05).ROC analysis showed AUCs of 0.888 and 0.729 for the training and validation sets,respectively.CONCLUSION Age,KPS score,parenteral nutrition,TNM staging,distant metastasis,bone marrow suppression,and activities of daily living impairment are independent risk factors for PICC-related thrombosis in hospitalized patients with liver cancer,while catheter duration is a protective factor for the disease.The predictive model has an AUC of 0.827,indicating high predictive accuracy and clinical value.
文摘BACKGROUND Recently,research has linked Helicobacter pylori(H.pylori)stomach infection to colonic inflammation,mediated by toxin production,potentially impacting colorectal cancer occurrence.AIM To investigate the risk factors for post-colon polyp surgery,H.pylori infection,and its correlation with pathologic type.METHODS Eighty patients who underwent colon polypectomy in our hospital between January 2019 and January 2023 were retrospectively chosen.They were then randomly split into modeling(n=56)and model validation(n=24)sets using R.The modeling cohort was divided into an H.pylori-infected group(n=37)and an H.pylori-uninfected group(n=19).Binary logistic regression analysis was used to analyze the factors influencing the occurrence of H.pylori infection after colon polyp surgery.A roadmap prediction model was established and validated.Finally,the correlation between the different pathological types of colon polyps and the occurrence of H.pylori infection was analyzed after colon polyp surgery.RESULTS Univariate results showed that age,body mass index(BMI),literacy,alcohol consumption,polyp pathology type,high-risk adenomas,and heavy diet were all influential factors in the development of H.pylori infection after intestinal polypectomy.Binary multifactorial logistic regression analysis showed that age,BMI,and type of polyp pathology were independent predictors of the occurrence of H.pylori infection after intestinal polypectomy.The area under the receiver operating characteristic curve was 0.969[95%confidence interval(95%CI):0.928–1.000]and 0.898(95%CI:0.773–1.000)in the modeling and validation sets,respectively.The slope of the calibration curve of the graph was close to 1,and the goodness-of-fit test was P>0.05 in the two sets.The decision analysis curve showed a high rate of return in both sets.The results of the correlation analysis between different pathological types and the occurrence of H.pylori infection after colon polyp surgery showed that hyperplastic polyps,inflammatory polyps,and the occurrence of H.pylori infection were not significantly correlated.In contrast,adenomatous polyps showed a significant positive correlation with the occurrence of H.pylori infection.CONCLUSION Age,BMI,and polyps of the adenomatous type were independent predictors of H.pylori infection after intestinal polypectomy.Moreover,the further constructed column-line graph prediction model of H.pylori infection after intestinal polypectomy showed good predictive ability.
文摘Objective: Our study aims to validate the subjective Bayes mathematical model using the mathematical model of logistic regression. Expert systems are being utilized increasingly in medical fields for the purposes of assisting diagnosis and treatment planning in Dentistry. Existing systems used few symptoms for dental diagnosis. In Dentistry, few symptoms are not enough for diagnosis. In this research, a conditional probability model (Bayes rule) was developed with increased number of symptoms associated with a disease for diagnosis. A test set of recurrent cases was then used to test the diagnostic capacity of the system. The generated diagnosis matched that of the human experts. The system was also tested for its capacity to handle uncommon dental diseases and the system portrayed useful potential. Method: The study used the Subjective Mathematical Bayes Model (SBM) approach and employed Logistic Regression Mathematical Model (LMR) techniques. The external validation of the subjective mathematical Bayes model (MSB) concerns the real cases of 625 patients who developed alveolar osteitis (OA). We propose strategies for reproducibility and reporting standards, outlining an updated WAMBS (when to Worry and how to Avoid the Misuse of Bayesian Statistics) checklist. Finally, we outline the impact of Bayesian analysis Logistic Regression Mathematical Model (LMR) techniques and on artificial intelligence, a major goal in the next decade. Results: The internal validation had identified seven (7) etiological factors of OA, which will be compared to the cases of MRL, for the external validation which retained six (6) etiological factors of OA. The experts in the internal validation of the MSB had generated 40 cases of OA and a COP of (0.5), which will be compared to the MRL that collected 625 real cases of OA to produce a Cop of (0.6) in the external validation, which discriminates between healthy patients (Se) and sick patients (Sp). Compared to real cases and the logistic regression model, the Bayesian model is efficient and its validity is established.
文摘BACKGROUND Surgical resection remains the primary treatment for hepatic malignancies,and intraoperative bleeding is associated with a significantly increased risk of death.Therefore,accurate prediction of intraoperative bleeding risk in patients with hepatic malignancies is essential to preventing bleeding in advance and providing safer and more effective treatment.AIM To develop a predictive model for intraoperative bleeding in primary hepatic malignancy patients for improving surgical planning and outcomes.METHODS The retrospective analysis enrolled patients diagnosed with primary hepatic malignancies who underwent surgery at the Hepatobiliary Surgery Department of the Fourth Hospital of Hebei Medical University between 2010 and 2020.Logistic regression analysis was performed to identify potential risk factors for intraoperative bleeding.A prediction model was developed using Python programming language,and its accuracy was evaluated using receiver operating characteristic(ROC)curve analysis.RESULTS Among 406 primary liver cancer patients,16.0%(65/406)suffered massive intraoperative bleeding.Logistic regression analysis identified four variables as associated with intraoperative bleeding in these patients:ascites[odds ratio(OR):22.839;P<0.05],history of alcohol consumption(OR:2.950;P<0.015),TNM staging(OR:2.441;P<0.001),and albumin-bilirubin score(OR:2.361;P<0.001).These variables were used to construct the prediction model.The 406 patients were randomly assigned to a training set(70%)and a prediction set(30%).The area under the ROC curve values for the model’s ability to predict intraoperative bleeding were 0.844 in the training set and 0.80 in the prediction set.CONCLUSION The developed and validated model predicts significant intraoperative blood loss in primary hepatic malignancies using four preoperative clinical factors by considering four preoperative clinical factors:ascites,history of alcohol consumption,TNM staging,and albumin-bilirubin score.Consequently,this model holds promise for enhancing individualised surgical planning.
基金This workwas supported by the Medical and Health Science and Technology Project of Zhejiang Province(No.2021KY180).
文摘Objectives:Anastomotic leakage(AL)stands out as a prevalent and severe complication following gastric cancer surgery.It frequently precipitates additional serious complications,significantly influencing the overall survival time of patients.This study aims to enhance the risk-assessment strategy for AL following gastrectomy for gastric cancer.Methods:This study included a derivation cohort and validation cohort.The derivation cohort included patients who underwent radical gastrectomy at Sir Run Run Shaw Hospital,Zhejiang University School of Medicine,from January 1,2015 to December 31,2020.An evidence-based predictor questionnaire was crafted through extensive literature review and panel discussions.Based on the questionnaire,inpatient data were collected to form a model-derivation cohort.This cohort underwent both univariate and multivariate analyses to identify factors associated with AL events,and a logistic regression model with stepwise regression was developed.A 5-fold cross-validation ensured model reliability.The validation cohort included patients from August 1,2021 to December 31,2021 at the same hospital.Using the same imputation method,we organized the validation-queue data.We then employed the risk-prediction model constructed in the earlier phase of the study to predict the risk of AL in the subjects included in the validation queue.We compared the predictions with the actual occurrence,and evaluated the external validation performance of the model using model-evaluation indicators such as the area under the receiver operating characteristic curve(AUROC),Brier score,and calibration curve.Results:The derivation cohort included 1377 patients,and the validation cohort included 131 patients.The independent predictors of AL after radical gastrectomy included age65 y,preoperative albumin<35 g/L,resection extent,operative time240 min,and intraoperative blood loss90 mL.The predictive model exhibited a solid AUROC of 0.750(95%CI:0.694e0.806;p<0.001)with a Brier score of 0.049.The 5-fold cross-validation confirmed these findings with a calibrated C-index of 0.749 and an average Brier score of 0.052.External validation showed an AUROC of 0.723(95%CI:0.564e0.882;p?0.006)and a Brier score of 0.055,confirming reliability in different clinical settings.Conclusions:We successfully developed a risk-prediction model for AL following radical gastrectomy.This tool will aid healthcare professionals in anticipating AL,potentially reducing unnecessary interventions.
文摘BACKGROUND Acute pancreatitis(AP)is a disease caused by abnormal activation of pancreatic enzymes and can lead to self-digestion of pancreatic tissues and dysfunction of other organs.Enteral nutrition plays a vital role in the treatment of AP because it can meet the nutritional needs of patients,promote the recovery of intestinal function,and maintain the barrier and immune functions of the intestine.However,the risk of aspiration during enteral nutrition is high;once aspiration occurs,it may cause serious complications,such as aspiration pneumonia,and suffocation,posing a threat to the patient’s life.This study aims to establish and validate a prediction model for enteral nutrition aspiration during hospitalization in patients with AP.AIM To establish and validate a predictive model for enteral nutrition aspiration during hospitalization in patients with AP.METHODS A retrospective review was conducted on 200 patients with AP admitted to Chengdu Shangjin Nanfu Hospital,West China Hospital of Sichuan University from January 2020 to February 2024.Clinical data were collected from the electronic medical record system.Patients were randomly divided into a validation group(n=40)and a modeling group(n=160)in a 1:4 ratio,matched with 200 patients from the same time period.The modeling group was further categorized into an aspiration group(n=25)and a non-aspiration group(n=175)based on the occurrence of enteral nutrition aspiration during hospitalization.Univariate and multivariate logistic regression analyses were performed to identify factors influencing enteral nutrition aspiration in patients with AP during hospitalization.A prediction model for enteral nutrition aspiration during hospitalization was constructed,and calibration curves were used for validation.Receiver operating characteristic curve analysis was conducted to evaluate the predictive value of the model.RESULTS There was no statistically significant difference in general data between the validation and modeling groups(P>0.05).The comparison of age,gender,body mass index,smoking history,hypertension history,and diabetes history showed no statistically significant difference between the two groups(P>0.05).However,patient position,consciousness status,nutritional risk,Acute Physiology and Chronic Health Evaluation(APACHE-II)score,and length of nasogastric tube placement showed statistically significant differences(P<0.05)between the two groups.Multivariate logistic regression analysis showed that patient position,consciousness status,nutritional risk,APACHE-II score,and length of nasogastric tube placement were independent factors influencing enteral nutrition aspiration in patients with AP during hospitalization(P<0.05).These factors were incorporated into the prediction model,which showed good consistency between the predicted and actual risks,as indicated by calibration curves with slopes close to 1 in the training and validation sets.Receiver operating characteristic analysis revealed an area under the curve(AUC)of 0.926(95%CI:0.8889-0.9675)in the training set.The optimal cutoff value is 0.73,with a sensitivity of 88.4 and specificity of 85.2.In the validation set,the AUC of the model for predicting enteral nutrition aspiration in patients with AP patients during hospitalization was 0.902,with a standard error of 0.040(95%CI:0.8284-0.9858),and the best cutoff value was 0.73,with a sensitivity of 91.9 and specificity of 81.8.CONCLUSION A prediction model for enteral nutrition aspiration during hospitalization in patients with AP was established and demonstrated high predictive value.Further clinical application of the model is warranted.
基金The authors gratefully acknowledge the science teams of NASA High Mountain Asia 8-meter DEM and NASA ICESat-2 for providing access to the data.This work was conducted with the infrastructure provided by the National Remote Sensing Centre(NRSC),for which the authors were indebted to the Director,NRSC,Hyderabad.We acknowledge the continued support and scientific insights from Mr.Rakesh Fararoda,Mr.Sagar S Salunkhe,Mr.Hansraj Meena,Mr.Ashish K.Jain and other staff members of Regional Remote Sensing Centre-West,NRSC/ISRO,Jodhpur.The authors want to acknowledge Dr.Kamal Pandey,Scientist,IIRS,Dehradun,for sharing field-level information about the Auli-Joshimath.This research did not receive any specific grant from funding agencies in the public,commercial,or not-for-profit sectors.
文摘High Mountain Asia(HMA),recognized as a third pole,needs regular and intense studies as it is susceptible to climate change.An accurate and high-resolution Digital Elevation Model(DEM)for this region enables us to analyze it in a 3D environment and understand its intricate role as the Water Tower of Asia.The science teams of NASA realized an 8-m DEM using satellite stereo imagery for HMA,termed HMA 8-m DEM.In this research,we assessed the vertical accuracy of HMA 8-m DEM using reference elevations from ICESat-2 geolocated photons at three test sites of varied topography and land covers.Inferences were made from statistical quantifiers and elevation profiles.For the world’s highest mountain,Mount Everest,and its surroundings,Root Mean Squared Error(RMSE)and Mean Absolute Error(MAE)resulted in 1.94 m and 1.66 m,respectively;however,a uniform positive bias observed in the elevation profiles indicates the seasonal snow cover change will dent the accurate estimation of the elevation in this sort of test sites.The second test site containing gentle slopes with forest patches has exhibited the Digital Surface Model(DSM)features with RMSE and MAE of 0.58 m and 0.52 m,respectively.The third test site,situated in the Zanda County of the Qinghai-Tibet,is a relatively flat terrain bed,mostly bare earth with sudden river cuts,and has minimal errors with RMSE and MAE of 0.32 m and 0.29 m,respectively,and with a negligible bias.Additionally,in one more test site,the feasibility of detecting the glacial lakes was tested,which resulted in exhibiting a flat surface over the surface of the lakes,indicating the potential of HMA 8-m DEM for deriving the hydrological parameters.The results accrued in this investigation confirm that the HMA 8-m DEM has the best vertical accuracy and should be of high use for analyzing natural hazards and monitoring glacier surfaces.
基金financially supported by the National Natural Science Foundation of China(Grant No.12074088).
文摘The present study explores the physical and acoustic characteristics of fine sand and clay in novel seabed marine sediments from of Pakistan coastline of the Arabian Sea.The measured physical parameters included mean grain size,mass density,bulk density,salinity,porosity,permeability,pore size and mineralogical composition.Acoustic properties,including sound speed and attenuation,in the high frequency range of 90-170 kHz were analyzed.A controlled laboratory setup with the acoustic transmission method and Fourier transform techniques was utilized to examine the sound propagation and absorption of novel seabed sediments.The standard deviation of mean sound speed in fresh water was 0.75 m/s,and attenuation was observed in the range of 0.43 to 0.61 dB/m.The mean sound velocity in sand and clay varied from 1706 to 1709 m/s and 1602 to 1608 m/s,respectively.Corresponding average attenuation was observed at 80 to 93 dB/m in sandy sediments and from 31.8 to 38.6 dB/m in clayey sediments.Sound velocity variation within sandy sediment is low,consistent with expected results,and smaller than the predicted uncertainty.However,clay sediment exhibited a positive linear correlation and low sound speed variation.Attenuation increased linearly with frequency for both sediments.Finally,the laboratory results were validated by using the Biot−Stoll model.The dispersion of sound speed in sandy and clayey sediments was consistent with the predictions of the Biot−Stoll model.Measured attenuation aligned more with Biot−Stoll model predictions due to improved permeability,tortuosity and pore size parameter fitting.
文摘Pneumatic tire modeling and validation have been the topic of several research papers, however, most of these papers only deal with pneumatic passenger and truck tires. In recent years, wheeled-scaled vehicles have gained lots of attention as a feasible testing platform, nonetheless up to the authors’ knowledge there has been no research regarding the use of scaled tires and their effect on the overall vehicle performance characteristics. This paper presents a novel scaled electric combat vehicle tire model and validation technique. The pro-line lockdown tire size 3.00 × 7.35 is modeled using the Finite Element Analysis (FEA) technique and several materials including layered membrane, beam elements, and Mooney-Rivlin for rubber. The tire-rim assembly is then described, and the rigid body analysis is presented. The tire is then validated using an in-house custom-made static tire testing machine. The tire test rig is made specifically to test the pro-line tire model and is designed and manufactured in the laboratory. The tire is validated using vertical stiffness and footprint tests in the static domain at different operating conditions including several vertical loads. Then the tire is used to perform rolling resistance and steering analysis including the rolling resistance coefficient and the cornering stiffness. The analysis is performed at different operating conditions including longitudinal speeds of 5, 10, and 15 km/h. This tire model will be further used to determine the tractive and braking performance of the tire. Furthermore, the tire test rig will also be modified to perform cornering stiffness tests.
基金Project supported by the National Natural Science Foundation of China (Grant No.61973167)the Jiangsu Funding Program for Excellent Postdoctoral Talent。
文摘Continuum robots with high flexibility and compliance have the capability to operate in confined and cluttered environments. To enhance the load capacity while maintaining robot dexterity, we propose a novel non-constant subsegment stiffness structure for tendon-driven quasi continuum robots(TDQCRs) comprising rigid-flexible coupling subsegments.Aiming at real-time control applications, we present a novel static-to-kinematic modeling approach to gain a comprehensive understanding of the TDQCR model. The analytical subsegment-based kinematics for the multisection manipulator is derived based on screw theory and product of exponentials formula, and the static model considering gravity loading,actuation loading, and robot constitutive laws is established. Additionally, the effect of tension attenuation caused by routing channel friction is considered in the robot statics, resulting in improved model accuracy. The root-mean-square error between the outputs of the static model and the experimental system is less than 1.63% of the arm length(0.5 m). By employing the proposed static model, a mapping of bending angles between the configuration space and the subsegment space is established. Furthermore, motion control experiments are conducted on our TDQCR system, and the results demonstrate the effectiveness of the static-to-kinematic model.
文摘In this paper, a model averaging method is proposed for varying-coefficient models with response missing at random by establishing a weight selection criterion based on cross-validation. Under certain regularity conditions, it is proved that the proposed method is asymptotically optimal in the sense of achieving the minimum squared error.
基金the Special Fund for Clinical Research of Nanjing Drum Tower Hospital,No.2021-LCYJ-PY-01.
文摘BACKGROUND Transjugular intrahepatic portosystemic shunt(TIPS)is a cause of acute-onchronic liver failure(ACLF).AIM To investigate the risk factors of ACLF within 1 year after TIPS in patients with cirrhosis and construct a prediction model.METHODS In total,379 patients with decompensated cirrhosis treated with TIPS at Nanjing Drum Tower Hospital from 2017 to 2020 were selected as the training cohort,and 123 patients from Nanfang Hospital were included in the external validation cohort.Univariate and multivariate logistic regression analyses were performed to identify independent predictors.The prediction model was established based on the Akaike information criterion.Internal and external validation were conducted to assess the performance of the model.RESULTS Age and total bilirubin(TBil)were independent risk factors for the incidence of ACLF within 1 year after TIPS.We developed a prediction model comprising age,TBil,and serum sodium,which demonstrated good discrimination and calibration in both the training cohort and the external validation cohort.CONCLUSION Age and TBil are independent risk factors for the incidence of ACLF within 1 year after TIPS in patients with decompensated cirrhosis.Our model showed satisfying predictive value.
文摘Neuromyelitis optica spectrum disorders are neuroinflammatory demyelinating disorders that lead to permanent visual loss and motor dysfunction.To date,no effective treatment exists as the exact causative mechanism remains unknown.Therefore,experimental models of neuromyelitis optica spectrum disorders are essential for exploring its pathogenesis and in screening for therapeutic targets.Since most patients with neuromyelitis optica spectrum disorders are seropositive for IgG autoantibodies against aquaporin-4,which is highly expressed on the membrane of astrocyte endfeet,most current experimental models are based on aquaporin-4-IgG that initially targets astrocytes.These experimental models have successfully simulated many pathological features of neuromyelitis optica spectrum disorders,such as aquaporin-4 loss,astrocytopathy,granulocyte and macrophage infiltration,complement activation,demyelination,and neuronal loss;however,they do not fully capture the pathological process of human neuromyelitis optica spectrum disorders.In this review,we summarize the currently known pathogenic mechanisms and the development of associated experimental models in vitro,ex vivo,and in vivo for neuromyelitis optica spectrum disorders,suggest potential pathogenic mechanisms for further investigation,and provide guidance on experimental model choices.In addition,this review summarizes the latest information on pathologies and therapies for neuromyelitis optica spectrum disorders based on experimental models of aquaporin-4-IgG-seropositive neuromyelitis optica spectrum disorders,offering further therapeutic targets and a theoretical basis for clinical trials.