To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology ...To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.展开更多
A novel modeling method which can restore the shape of the femoral head with collapse induced by ischemic necrosis is proposed. First, sequential tomograms of the hip are obtained from a CT scan; secondly, an accurate...A novel modeling method which can restore the shape of the femoral head with collapse induced by ischemic necrosis is proposed. First, sequential tomograms of the hip are obtained from a CT scan; secondly, an accurate and automatic method is used to extract the profile of the acetabulum; thirdly, a hybrid method is utilized to gather fiducial marks on the acetabulum; fourthly, bulky error sampling points are removed. Finally, an ellipsoid fitting method is used to fit the ellipsoid model of the femoral head. Two male sufferers with different necrosis extents are chosen as experimental subjects for contrastive simulation. Fifty cases of different ages (from 25 to 79 years old) are utilized for statistical comparisons of matching errors. The prosthetic models highly resemble the primary shape of the femoral head in health. This new method provides not only a theoretical model for accurate operation position fixing in an orthopaedics clinic, but it is also an innovative practical means for the individual manufacture of artificial femoral heads.展开更多
Objective To establish an experimental model of early stage avascular necrosis of the femoral head (ANFH) caused by corticosteroid in adult rabbits and to observe the pathological changes with various imaging techni...Objective To establish an experimental model of early stage avascular necrosis of the femoral head (ANFH) caused by corticosteroid in adult rabbits and to observe the pathological changes with various imaging techniques. Methods ANFH was induced by a combination of hypersensitivity vasculitis caused by injection of horse serum and subsequent administration of a high dose of corticosteroid. The pathological changes were detected with digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), ink artery infusion angiography, hematoxylin-eosin staining, and immunohistochemistry. Results The imageological and pathological changes corresponded to the clinical characteristics of early stage ANFH. DR showed bilaterally increased bone density, an unclear epiphyseal line, and blurred texture of cancellous bone. CT showed spot-like low-density imaging of cancellous bone, thinner cortical bone, osteoporosis, and an unclear epiphyseal line. MR! showed bone marrow edema and spot-like high signals in T2-weighted imaging in cancellous bone. Ink artery infusion angiography showed fewer obstructed blood vessels in the femoral head. HE staining of pathological sections showed fewer trabeculae and thin bone, an increased proportion of empty osteocyte lacunae, decreased hematopoiesis, thrombosis, and fat cell hypertrophy. Immunohistochemistry showed attenuated expression of vascular endothelial growth factor in osteoblasts and chondrocytes, and on the inner membrane of blood vessels. Conclusion Experimental rabbit model of early stage ANFH caused by corticosteroid can be successfully established and provide the foundation for developing effective methods to treat early stage ANFH.展开更多
As the maturity of female costume concept as well as the social consuming activities, a new and higher requirement is imposed on female underwear design. Human body model is the basic of many applications on 3D garmen...As the maturity of female costume concept as well as the social consuming activities, a new and higher requirement is imposed on female underwear design. Human body model is the basic of many applications on 3D garment CAD. This paper delivered a novel approach for modeling a human body which could be driven by related body dimensions to form a female breast model library based on the free form deformatioll technologies. The 3D female breast shape reserve has a strong potential of being used for bra design, bra flttins, virtual try-on and exhibition to meet "made-tomeasure" demand of the booming bra market in the world.展开更多
Objective: To study the pharmacokinetics of native r SAK in rabbit's femoral artery thrombosis model, the “lytic circle' method was used to determine plasma levels of r SAK. Methods: Thirty New Zealand rabb...Objective: To study the pharmacokinetics of native r SAK in rabbit's femoral artery thrombosis model, the “lytic circle' method was used to determine plasma levels of r SAK. Methods: Thirty New Zealand rabbits were randomly assigned to the control (saline 10 ml, 30 min), r SAK low dose (0.25 mg/kg, 30 min), medial dose (0.50 mg/kg, 30 min), high dose (1.00 mg/kg, 30 min), single bolus (0.50 mg/kg, 2 min) and conjunctive therapy (initiated with heparin 200 U/kg, followed by infusion of r SAK 0.50 mg/kg for 30 min, and subsequently infused heparin 50 U/(kg·h) to endpoint) groups. The right femoral artery thrombosis model in rabbit was made by balloon injury, then the thrombolytic agents were infused through parallel ear vein and the blood samples were collected pre thrombolysis and at different time post thrombolysis to determine the plasma levels of r SAK by “lytic circle' method, the plasma levels of r SAK were processed by pharmacokinetic computing procedure to fit the model. Results: The plasma levels of r SAK and the diameters of lytic circles showed a pretty good linear correlation under the scope of 2.0×10 4 2.0×10 6 U/L, and the averaged recycle rate was (96.05±11.35)%(RSD =±11.82%).All peak concentration time in each infusion group was 30 min, and the peak concentrations positively correlated with the doses administrated in infusion groups(r=0.999 98, P <0.000 1). In single bolus group, Peak concentration time was 2 min, and the peak concentration reached (5.16±1.02) mg/L, which was significant higher than that in the same dose r SAK infusion group ( P <0.01). In conjunctive therapy group, the peak concentration showed no significant difference from that in the same dose r SAK infusion group ( P >0.05). The plasma levels of r SAK fit in two compartment model as processed by pharmacokinetic computing procedure in each group. Conclusion: The “lytic circle' method is a simple, practical and reliable method to determine the plasma level of r SAK, and the pharmacokinetics of native r SAK infusion fits in two compartment model in rabbit's femoral artery thrombosis model.展开更多
The prophylactic effects of Chinese propolis against cypermethrin toxicity were evaluated by performing ovary and uterus histopathology, as well as by characterizing ovarian function, embryos, and litters. Cypermethri...The prophylactic effects of Chinese propolis against cypermethrin toxicity were evaluated by performing ovary and uterus histopathology, as well as by characterizing ovarian function, embryos, and litters. Cypermethrin induced atypia in the ovary and uterus, and decreased the ovulation sites and the number of embryos. Cypermethrin-induced oxidative stress during pregnancy, decreased the parturition rate as well as the number and weight of offspring and increased the incidence of morphological malformations in the offspring. Administration of propolis to cypermethrin-treated animals mitigated cypermethrin-induced reproductive toxicity.展开更多
Vulvodynia is a prevalent form of chronic pain, most com- monly affecting the vaginal vestibule (vestibulodynia) (Pukall et al., 2016). Women with vulvodynia describe intense pain in response to light touch of the...Vulvodynia is a prevalent form of chronic pain, most com- monly affecting the vaginal vestibule (vestibulodynia) (Pukall et al., 2016). Women with vulvodynia describe intense pain in response to light touch of the affected region, such that sexual function and other activities can be severely limited. Medical costs associated with vulvodynia are high, exceeding $21 billion annually in the United States (Xie et al., 2012). The high level of direct medical costs has been linked to high treatment failure rates. Many women with the disorder consult multiple practitioners and undergo multiple courses of treatment with limited benefit.展开更多
In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element ...In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.展开更多
The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--...The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.展开更多
A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens...A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.展开更多
We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also in...We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.展开更多
This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initial...This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR.展开更多
To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model ...To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production.展开更多
This study sought to determine the best method to quantify training based on heart rate data. It proposes a modification of Banister’s original performance model to improve the accuracy of predicted performance. The ...This study sought to determine the best method to quantify training based on heart rate data. It proposes a modification of Banister’s original performance model to improve the accuracy of predicted performance. The new formulation introduces a variable that accounts for changes in the subject’s initial performance as a result of the quantity of training. The two systems models were applied to a well-trained female monofin swimmer over a 24-week training period. Each model comprised a set of parameters unique to the individual and was estimated by fitting model-predicted performance to measured performance. We used the Alienor method associated to Optimization-Preserving Operators to identify these parameters. The quantification method based on training intensity zones gave a better estimation of predicted performance in both models. Using the new model in sports in which performance is generally predicted (running, swimming) will help us to define its real interest.展开更多
To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was i...To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was implemented. A series of isothermal compression tests were performed primarily on a Gleeble-3500 thermo-mechanical simulator in a temperature range of 648-748 K and a strain rate range of 0.01-10 s-1.According to the measured true stress-strain data,the strain hardening rate curves(dσ/dε versus σ) were plotted to identify the critical strains for DRX initiation(εc). By further derivation of the related material constants, the DRX volume fraction equation and the strain for 50% DRX(ε0.5) equation were solved. Accordingly, the aforementioned DRX equations were implanted into the FE model to conduct a series of simulations for the isothermal compression tests. The results show that during the evolution of DRX volume fraction at a fixed strain rate, the strain required for the same amount of DRX volume fraction increases with decreasing temperature. In contrast, at a fixed temperature, it increases with increasing strain rate. Ultimately, the DRX kinetics model of AlCu4 SiMg alloy and the consequence of the FE analysis were validated by microstructure observations.展开更多
High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the h...High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed in- creasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.展开更多
Because insulin released by the β-cells of pancreatic islets is the main regulator of glucose levels, the quantitative modeling of their glucose-stimulated insulin secretion is of obvious interest not only to improve...Because insulin released by the β-cells of pancreatic islets is the main regulator of glucose levels, the quantitative modeling of their glucose-stimulated insulin secretion is of obvious interest not only to improve our understanding of the processes involved, but also to allow better assessment of β -cell function in diabetic patients or islet transplant recipients as well as the development of improved artificial or bioartificial pancreas devices. We have recently developed a general, local concentrations-based multiphysics computational model of insulin secretion in avascular pancreatic islets that can be used to calculate insulin secretion for arbitrary geometries of cultured, perifused, transplanted, or encapsulated islets in response to various glucose profiles. Here, experimental results obtained from two different dynamic glucose-stimulated insulin release (GSIR) perifusion studies performed by us following standard procedures are compared to those calculated by the model. Such perifusion studies allow the quantitative assessment of insulin release kinetics under fully controllable experimental conditions of varying external concentrations of glucose, oxygen, or other compounds of interest, and can provide an informative assessment of islet quality and function. The time-profile of the insulin secretion calculated by the model was in good agree- ment with the experimental results obtained with isolated human islets. Detailed spatial distributions of glucose, oxygen, and insulin were calculated and are presented to provide a quantitative visualization of various important aspects of the insulin secretion dynamics in perifused islets.展开更多
This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle,including the absorption of photons.Understanding the sequenc...This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle,including the absorption of photons.Understanding the sequence of events after photon absorption and their timescales is important for many applications of nanoparticles.Various processes are discussed,starting with optical absorption by electrons,proceeding through the relaxation of the electrons due to electron–electron scattering and electron–phonon coupling,and ending with the dissipation of the nanoparticle energy into the environment.The goal is to consider the timescales,values,and temperature dependences of the electron heat capacity and the electron–phonon coupling parameter that describe these processes and how these dependences affect the electron energy relaxation.Two-and four-temperature models for describing electron–phonon relaxation are discussed.Significant emphasis is paid to the proposed analytical approach to modeling processes during the action of a femtosecond laser pulse on a metal nanoparticle.These consider the temperature dependences of the electron heat capacity and the electron–phonon coupling factor of the metal.The entire process is divided into four stages:(1)the heating of the electron system by a pulse,(2)electron thermalization,(3)electron–phonon energy exchange and the equalization of the temperature of the electrons with the lattice,and(4)cooling of the nanoparticle.There is an appropriate analytical description of each stage.The four-temperature model can estimate the parameters of the laser and nanoparticles needed for applications of femtosecond laser pulses and nanoparticles.展开更多
FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the soluti...FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the solution of induction heating. A new heat generating rate model was proposed and derived from the calculated results by FEM software in consideration of work frequency, source current density, and the air gap between induction coil and slab. The calculated distribution of heat generating rate in the skin depth by the model is satisfying and reliable compared with that of FEM software. Then, the mathematic model of the heat generating rate model is considered as the density of heat reservoir to solve the temperature in induction heating. Moreover, the temperature evolution of slab in induction heating from a hot rolling plant has been solved by the developed FE code and the calculated temperature has a good agreement with the measured value. Therefore, the heat generating rate model is suitable and efficiency to solve the temperature in induction heating by FEM.展开更多
文摘To optimize the excavation of rock using underground blasting techniques,a reliable and simplified approach for modeling rock fragmentation is desired.This paper presents a multistep experimentalnumerical methodology for simplifying the three-dimensional(3D)to two-dimensional(2D)quasiplane-strain problem and reducing computational costs by more than 100-fold.First,in situ tests were conducted involving single-hole and free-face blasting of a dolomite rock mass in a 1050-m-deep mine.The results were validated by laser scanning.The craters were then compared with four analytical models to calculate the radius of the crushing zone.Next,a full 3D model for single-hole blasting was prepared and validated by simulating the crack length and the radius of the crushing zone.Based on the stable crack propagation zones observed in the 3D model and experiments,a 2D model was prepared.The properties of the high explosive(HE)were slightly reduced to match the shape and number of radial cracks and crushing zone radius between the 3D and 2D models.The final methodology was used to reproduce various cut-hole blasting scenarios and observe the effects of residual cracks in the rock mass on further fragmentation.The presence of preexisting cracks was found to be crucial for fragmentation,particularly when the borehole was situated near a free rock face.Finally,an optimization study was performed to determine the possibility of losing rock continuity at different positions within the well in relation to the free rock face.
基金The National High Technology Research and Development Program of China(863 Program)(No.863-306-ZD13-03-6)the High Technology Research and Development Program of Dalian City(No.2005E21SF134)
文摘A novel modeling method which can restore the shape of the femoral head with collapse induced by ischemic necrosis is proposed. First, sequential tomograms of the hip are obtained from a CT scan; secondly, an accurate and automatic method is used to extract the profile of the acetabulum; thirdly, a hybrid method is utilized to gather fiducial marks on the acetabulum; fourthly, bulky error sampling points are removed. Finally, an ellipsoid fitting method is used to fit the ellipsoid model of the femoral head. Two male sufferers with different necrosis extents are chosen as experimental subjects for contrastive simulation. Fifty cases of different ages (from 25 to 79 years old) are utilized for statistical comparisons of matching errors. The prosthetic models highly resemble the primary shape of the femoral head in health. This new method provides not only a theoretical model for accurate operation position fixing in an orthopaedics clinic, but it is also an innovative practical means for the individual manufacture of artificial femoral heads.
基金The National 863 Program (2007AA02Z458)Science and Technology Program of Guangdong Province (2005B34001004)+1 种基金Science and Technology Program of Guangzhou (2005Z3-E0151)Medical Science Research Fund of Guangdong Province (B2005083, B2007107)
文摘Objective To establish an experimental model of early stage avascular necrosis of the femoral head (ANFH) caused by corticosteroid in adult rabbits and to observe the pathological changes with various imaging techniques. Methods ANFH was induced by a combination of hypersensitivity vasculitis caused by injection of horse serum and subsequent administration of a high dose of corticosteroid. The pathological changes were detected with digital radiography (DR), computed tomography (CT), magnetic resonance imaging (MRI), ink artery infusion angiography, hematoxylin-eosin staining, and immunohistochemistry. Results The imageological and pathological changes corresponded to the clinical characteristics of early stage ANFH. DR showed bilaterally increased bone density, an unclear epiphyseal line, and blurred texture of cancellous bone. CT showed spot-like low-density imaging of cancellous bone, thinner cortical bone, osteoporosis, and an unclear epiphyseal line. MR! showed bone marrow edema and spot-like high signals in T2-weighted imaging in cancellous bone. Ink artery infusion angiography showed fewer obstructed blood vessels in the femoral head. HE staining of pathological sections showed fewer trabeculae and thin bone, an increased proportion of empty osteocyte lacunae, decreased hematopoiesis, thrombosis, and fat cell hypertrophy. Immunohistochemistry showed attenuated expression of vascular endothelial growth factor in osteoblasts and chondrocytes, and on the inner membrane of blood vessels. Conclusion Experimental rabbit model of early stage ANFH caused by corticosteroid can be successfully established and provide the foundation for developing effective methods to treat early stage ANFH.
文摘As the maturity of female costume concept as well as the social consuming activities, a new and higher requirement is imposed on female underwear design. Human body model is the basic of many applications on 3D garment CAD. This paper delivered a novel approach for modeling a human body which could be driven by related body dimensions to form a female breast model library based on the free form deformatioll technologies. The 3D female breast shape reserve has a strong potential of being used for bra design, bra flttins, virtual try-on and exhibition to meet "made-tomeasure" demand of the booming bra market in the world.
文摘Objective: To study the pharmacokinetics of native r SAK in rabbit's femoral artery thrombosis model, the “lytic circle' method was used to determine plasma levels of r SAK. Methods: Thirty New Zealand rabbits were randomly assigned to the control (saline 10 ml, 30 min), r SAK low dose (0.25 mg/kg, 30 min), medial dose (0.50 mg/kg, 30 min), high dose (1.00 mg/kg, 30 min), single bolus (0.50 mg/kg, 2 min) and conjunctive therapy (initiated with heparin 200 U/kg, followed by infusion of r SAK 0.50 mg/kg for 30 min, and subsequently infused heparin 50 U/(kg·h) to endpoint) groups. The right femoral artery thrombosis model in rabbit was made by balloon injury, then the thrombolytic agents were infused through parallel ear vein and the blood samples were collected pre thrombolysis and at different time post thrombolysis to determine the plasma levels of r SAK by “lytic circle' method, the plasma levels of r SAK were processed by pharmacokinetic computing procedure to fit the model. Results: The plasma levels of r SAK and the diameters of lytic circles showed a pretty good linear correlation under the scope of 2.0×10 4 2.0×10 6 U/L, and the averaged recycle rate was (96.05±11.35)%(RSD =±11.82%).All peak concentration time in each infusion group was 30 min, and the peak concentrations positively correlated with the doses administrated in infusion groups(r=0.999 98, P <0.000 1). In single bolus group, Peak concentration time was 2 min, and the peak concentration reached (5.16±1.02) mg/L, which was significant higher than that in the same dose r SAK infusion group ( P <0.01). In conjunctive therapy group, the peak concentration showed no significant difference from that in the same dose r SAK infusion group ( P >0.05). The plasma levels of r SAK fit in two compartment model as processed by pharmacokinetic computing procedure in each group. Conclusion: The “lytic circle' method is a simple, practical and reliable method to determine the plasma level of r SAK, and the pharmacokinetics of native r SAK infusion fits in two compartment model in rabbit's femoral artery thrombosis model.
文摘The prophylactic effects of Chinese propolis against cypermethrin toxicity were evaluated by performing ovary and uterus histopathology, as well as by characterizing ovarian function, embryos, and litters. Cypermethrin induced atypia in the ovary and uterus, and decreased the ovulation sites and the number of embryos. Cypermethrin-induced oxidative stress during pregnancy, decreased the parturition rate as well as the number and weight of offspring and increased the incidence of morphological malformations in the offspring. Administration of propolis to cypermethrin-treated animals mitigated cypermethrin-induced reproductive toxicity.
基金A project described in this work regarding innervation changes in the murine vagina in response to inflammation was supported by a grant from the Centre for Neuroscience,Flinders University,Australia
文摘Vulvodynia is a prevalent form of chronic pain, most com- monly affecting the vaginal vestibule (vestibulodynia) (Pukall et al., 2016). Women with vulvodynia describe intense pain in response to light touch of the affected region, such that sexual function and other activities can be severely limited. Medical costs associated with vulvodynia are high, exceeding $21 billion annually in the United States (Xie et al., 2012). The high level of direct medical costs has been linked to high treatment failure rates. Many women with the disorder consult multiple practitioners and undergo multiple courses of treatment with limited benefit.
基金Supported by National Natural Science Foundation of China(No.50539010)
文摘In this paper,three different modeling ranges were selected in the structural analysis for a hydropower house.The analysis was carried out using ABAQUS 6.6.The modeling range has a remarkable effect on finite element method(FEM) calculation result at the middle position of typical cross-sections where the concrete is relatively thin,and at the region close to turbine floor.If the ventilation barrel,floor slabs and columns above turbine floor are excluded from FEM model,the maximum rise difference of pedestal structure increases by about 24% compared with that of the whole model.It is indicated that different modeling ranges indeed affect FEM calculation result,and the structure above turbine floor in the FEM model should be included.
基金Project(50376076) supported by the National Natural Science Foundation of China
文摘The experimental tests of tensile for lead-flee solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 ℃ and strain rate range from 5 × 10^-5 to 2 × 10^-2s^-1, and its stress--strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right comer of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796 × 10^4 cycles under the calculated conditions.
文摘A three-dimensional dynamic damage model that fits both small and large damage sizes is developed to predict impact damage initiation and propagation for each lamina of T300-carbon/epoxy laminations.First,13 specimens of the same lamination sequence are subjected to three different impact energies(10 J,15 J,and 20 J).After the impact,the laminates are inspected by the naked eye to observe the damage in the outer layers,and subsequently X-rayed to detect the inner damage.Next,the stress analysis of laminates subjected to impact loading is presented,based on the Hertz contact law and virtual displacement principle.Based on the analysis results,a three-dimensional dynamic damage model is proposed,including the Hou failure criteria and Camanho stiffness degradation model,to predict the impact damage shape and area.The numerical predictions of the damage shape and area show a relatively reasonable agreement with the experiments.Finally,the impact damage initiation and propagation for each lamina are investigated using this damage model,and the results improve the understanding of the impact process.
基金partially supported by the National R & D Special Fund of Public Welfare Industry(No.200808069)National Natural Science Foundation of China(Nos.40974038 and 41025014)the Joint Research Collaboration Program by the Ministry of Science and Technology of China(No.2010DFA21570)
文摘We investigated how density and quality of mesh around interest domain affect electromagnetic (EM) responses of 3D Earth layered media using finite element method (FEM). Effect of different mesh shapes was also investigated using a method of mixing structured and unstructured mesh. As a case study, we estimated the effects of meshing on selectivity phenomenon of seismic electric signal (SES). Our results suggest that the relative errors resulting from mesh effects may not be negligible, which may lead to some unconvincing explanation of the SES selectivity based on the numerical modeling results.
文摘This paper deals with the mathematical modelling and 3D FEM study of the energy release rate(ERR)in the band crack’s front contained in the orthotropic thick rectangular plate which is stretched or compressed initially before the loading of the crack's edge planes.The initial stretching or compressing of the plate causes uniformly distributed normal stress to appear acting in the direction which is parallel to the plane on which the band crack is located.After the appearance of the initial stress in the plate it is assumed that the crack's edge planes are loaded with additional uniformly distributed normal forces and the ERR caused with this additional loading is studied.The corresponding boundary value problem is formulated within the scope of the so-called 3D linearized theory of elasticity which allows the initial stress on the values of the ERR to be taken into consideration.Numerical results on the influence of the initial stress,anisotropy properties of the plate material,the crack’s length and its distance from the face planes of the plate on the values of the ERR,are presented and discussed.In particular,it is established that for the relatively greater length of the crack’s band,the initial stretching of the plate causes a decrease,but the initial compression causes an increase in the values of the ERR.
基金funded by the National Natural Science Foundation of China(Nos.52192622,51874253,U20A202)
文摘To investigate the height growth of multi-cluster fractures during variable fluid-viscosity fracturing in a layered shale oil reservoir,a two-dimensional finite element method(FEM)-discrete fracture network(DFN)model coupled with flow,stress and damage is proposed.A traction-separation law is used to describe the mixed-mode response of the damaged adhesive fractures,and the cubic law is used to describe the fluid flow within the fractures.The rock deformation is controlled by the in-situ stress,fracture cohesion and fluid pressure on the hydraulic fracture surface.The coupled finite element equations are solved by the explicit time difference method.The effects of the fracturing treatment parameters including fluid viscosity,pumping rate and cluster spacing on the geometries of multifractures are investigated.The results show that variable fluid-viscosity injection can improve the complexity of the fracture network and height of the main fractures simultaneously.The pumping rate of15 m^(3)/min,variable fluid-viscosity of 3-9-21-36-45 mPa s with a cluster spacing of 7.5 m is the ideal treatment strategy.The field application shows that the peak daily production of the application well with the optimized injection procedu re of variable fluid-viscosity fracturing is 171 tons(about 2.85 times that of the adjacent well),which is the highest daily production record of a single shale oil well in China,marking a strategic breakthrough of commercial shale oil production in the Jiyang Depression,Shengli Oilfield.The variable fluid-viscosity fracturing technique is proved to be very effective for improving shale oil production.
文摘This study sought to determine the best method to quantify training based on heart rate data. It proposes a modification of Banister’s original performance model to improve the accuracy of predicted performance. The new formulation introduces a variable that accounts for changes in the subject’s initial performance as a result of the quantity of training. The two systems models were applied to a well-trained female monofin swimmer over a 24-week training period. Each model comprised a set of parameters unique to the individual and was estimated by fitting model-predicted performance to measured performance. We used the Alienor method associated to Optimization-Preserving Operators to identify these parameters. The quantification method based on training intensity zones gave a better estimation of predicted performance in both models. Using the new model in sports in which performance is generally predicted (running, swimming) will help us to define its real interest.
基金Project(cstc2016jcyjA0335)supported by Chongqing Foundation and Frontier Research,ChinaProject(P2017-020)supported by Open Fund Project of State Key Laboratory of Materials Processing and Die&Mould Technology,China
文摘To improve the understanding of coupling effect between dynamic recrystallization(DRX)behaviors and flow behaviors of as-cast AlCu4 SiMg, a finite element(FE) simulation equipped with the models of DRX evolution was implemented. A series of isothermal compression tests were performed primarily on a Gleeble-3500 thermo-mechanical simulator in a temperature range of 648-748 K and a strain rate range of 0.01-10 s-1.According to the measured true stress-strain data,the strain hardening rate curves(dσ/dε versus σ) were plotted to identify the critical strains for DRX initiation(εc). By further derivation of the related material constants, the DRX volume fraction equation and the strain for 50% DRX(ε0.5) equation were solved. Accordingly, the aforementioned DRX equations were implanted into the FE model to conduct a series of simulations for the isothermal compression tests. The results show that during the evolution of DRX volume fraction at a fixed strain rate, the strain required for the same amount of DRX volume fraction increases with decreasing temperature. In contrast, at a fixed temperature, it increases with increasing strain rate. Ultimately, the DRX kinetics model of AlCu4 SiMg alloy and the consequence of the FE analysis were validated by microstructure observations.
文摘High energy bone fractures resulting from impact trauma are often accompanied by subcutaneous soft tissue injuries, even if the skin remains intact. There is evidence that such closed soft tissue injuries affect the healing of bone fractures, and vice versa. Despite this knowledge, most impact trauma studies in animals have focussed on bone fractures or soft tissue trauma in isolation. However, given the simultaneous impact on both tissues a better understanding of the interaction between these two injuries is necessary to optimise clinical treatment. The aim of this study was therefore to develop a new experimental model and characterise, for the first time, the healing of a complex fracture with concurrent closed soft tissue trauma in sheep. A pendulum impact device was designed to deliver a defined and standardised impact to the distal thigh of sheep, causing a reproducible contusion injury to the subcutaneous soft tissues. In a subsequent procedure, a reproducible femoral butterfly fracture (AO C3-type) was created at the sheep’s femur, which was initially stabilised for 5 days by an external fixator construct to allow for soft tissue swelling to recede, and ultimately in a bridging construct using locking plates. The combined injuries were applied to twelve sheep and the healing observed for four or eight weeks (six animals per group) until sacrifice. The pendulum impact led to a moderate to severe circumferential soft tissue injury with significant bruising, haematomas and partial muscle disruptions. Posttraumatic measurements showed elevated intra-compartmental pressure and circulatory tissue breakdown markers, with recovery to normal, pre-injury values within four days. Clinically, no neurovascular deficiencies were observed. Bi-weekly radiological analysis of the healing fractures showed progressive callus healing over time, with the average number of callus bridges increasing from 0.4 at two weeks to 4.2 at eight weeks. Biomechanical testing after sacrifice showed in- creasing torsional stiffness between four and eight weeks healing time from 10% to 100%, and increasing ultimate torsional strength from 10% to 64% (relative to the contralateral control limb). Our results demonstrate the robust healing of a complex femur fracture in the presence of a severe soft tissue contusion injury in sheep and demonstrate the establishment of a clinically relevant experimental model, for research aimed at improving the treatment of bone fractures accompanied by closed soft tissue injuries.
文摘Because insulin released by the β-cells of pancreatic islets is the main regulator of glucose levels, the quantitative modeling of their glucose-stimulated insulin secretion is of obvious interest not only to improve our understanding of the processes involved, but also to allow better assessment of β -cell function in diabetic patients or islet transplant recipients as well as the development of improved artificial or bioartificial pancreas devices. We have recently developed a general, local concentrations-based multiphysics computational model of insulin secretion in avascular pancreatic islets that can be used to calculate insulin secretion for arbitrary geometries of cultured, perifused, transplanted, or encapsulated islets in response to various glucose profiles. Here, experimental results obtained from two different dynamic glucose-stimulated insulin release (GSIR) perifusion studies performed by us following standard procedures are compared to those calculated by the model. Such perifusion studies allow the quantitative assessment of insulin release kinetics under fully controllable experimental conditions of varying external concentrations of glucose, oxygen, or other compounds of interest, and can provide an informative assessment of islet quality and function. The time-profile of the insulin secretion calculated by the model was in good agree- ment with the experimental results obtained with isolated human islets. Detailed spatial distributions of glucose, oxygen, and insulin were calculated and are presented to provide a quantitative visualization of various important aspects of the insulin secretion dynamics in perifused islets.
基金supported by the Belarusian state program for scientific investigations“Convergence”(Grant No.N2.2.02)。
文摘This review considers the fundamental dynamical processes of metal nanoparticles during and after the impact of a femtosecond laser pulse on a nanoparticle,including the absorption of photons.Understanding the sequence of events after photon absorption and their timescales is important for many applications of nanoparticles.Various processes are discussed,starting with optical absorption by electrons,proceeding through the relaxation of the electrons due to electron–electron scattering and electron–phonon coupling,and ending with the dissipation of the nanoparticle energy into the environment.The goal is to consider the timescales,values,and temperature dependences of the electron heat capacity and the electron–phonon coupling parameter that describe these processes and how these dependences affect the electron energy relaxation.Two-and four-temperature models for describing electron–phonon relaxation are discussed.Significant emphasis is paid to the proposed analytical approach to modeling processes during the action of a femtosecond laser pulse on a metal nanoparticle.These consider the temperature dependences of the electron heat capacity and the electron–phonon coupling factor of the metal.The entire process is divided into four stages:(1)the heating of the electron system by a pulse,(2)electron thermalization,(3)electron–phonon energy exchange and the equalization of the temperature of the electrons with the lattice,and(4)cooling of the nanoparticle.There is an appropriate analytical description of each stage.The four-temperature model can estimate the parameters of the laser and nanoparticles needed for applications of femtosecond laser pulses and nanoparticles.
文摘FEM (Finite Element Method) has been widely used to solve temperature in hot rolling. The heat gen-erating rate of electromagnetic field has been discussed in order to improve the efficiency and accuracy in the solution of induction heating. A new heat generating rate model was proposed and derived from the calculated results by FEM software in consideration of work frequency, source current density, and the air gap between induction coil and slab. The calculated distribution of heat generating rate in the skin depth by the model is satisfying and reliable compared with that of FEM software. Then, the mathematic model of the heat generating rate model is considered as the density of heat reservoir to solve the temperature in induction heating. Moreover, the temperature evolution of slab in induction heating from a hot rolling plant has been solved by the developed FE code and the calculated temperature has a good agreement with the measured value. Therefore, the heat generating rate model is suitable and efficiency to solve the temperature in induction heating by FEM.