The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficultie...The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.展开更多
A comprehensive safety evaluation system taking the most influential factors into account has been developed to evaluate the reliability of hydraulic metal structures. Applying the techniques of AI and DB, the idea of...A comprehensive safety evaluation system taking the most influential factors into account has been developed to evaluate the reliability of hydraulic metal structures. Applying the techniques of AI and DB, the idea of a one-machine and three-base system is proposed. The framework of the three-base system has been designed and the structural framework constructed in turn. A practical example is given to illustrate the process of using this system and it can be used for comparison and analysis purposes. The key technology of the system is its ability to reorganize and improve the expert system's knowledge base by establishing the expert system. This system utilizes the computer technology inference process, making safety evaluation conclusions more reasonable and applicable to the actual situation. The system is not only advanced, but also feasible, reliable, artificially intelligent, and has the capacity to constantly grow.展开更多
Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the la...Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary.展开更多
In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models...In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.展开更多
The peculiar nature of control theory as a course that cut across a lot of major engineering disciplines calls for a look into how its learning can best be done without students feeling like they are wasting their tim...The peculiar nature of control theory as a course that cut across a lot of major engineering disciplines calls for a look into how its learning can best be done without students feeling like they are wasting their time.This paper takes a look at control theory as subject cut across various engineering field and has a wide background that students must really be comfortable with.Its wide application and background pose a huge challenge to the teaching of control.It goes further to look into traditional method of teaching,Project-Based Learning Blooms Taxonomy.It then proposes applying Flipped Bloom Taxonomy to Project-based learning for a deep understanding of control systems.展开更多
It is urgent to solve various problems in electromagnetic (EM) engineering under the increasingly complicated environment. Some expert systems (ES) come into being just to keep up with the demand for solving these...It is urgent to solve various problems in electromagnetic (EM) engineering under the increasingly complicated environment. Some expert systems (ES) come into being just to keep up with the demand for solving these problems. Combined with the analysis of development orES technology and the development trend of EM engineering software in recent years, the application orES technology in EM engineering is discussed, and especially the progress of complete ES in electromagnetic compatible (EMC) is introduced.展开更多
The paper presents a cognitive science framework for the analysis of knowledge-based systems,including people, media. simulation and expert systems, resulting in a practical model for the procedures ofknowledge engine...The paper presents a cognitive science framework for the analysis of knowledge-based systems,including people, media. simulation and expert systems, resulting in a practical model for the procedures ofknowledge engineering. Starting with the construct of a social organization model driven by anticipationand thed differentiating this into pesonal scientists with diverse relations to people and their internal andexternal communication, it provides powerful and general model of society. people, and the roles of peoplein society. This model extends naturally ic the role of conventional media in the knowledge processes ofsociety and the new roles of computer-based simulation and expert systems. In particular it provides amodel of knowledge transfer that enables the processes of knowledge engineering to be analyzed andautomated.展开更多
Requirements of software systems tend to change over time. The speed of this tendency depends on the application domain the software system under consideration belongs to. If we consider novel contexts such as pervasi...Requirements of software systems tend to change over time. The speed of this tendency depends on the application domain the software system under consideration belongs to. If we consider novel contexts such as pervasive systems and systems supporting dynamic B2B interaction, requirements change so fast that the research community is studying how to build systems that are able to self-adapt on the fly to some of these changes. When this happens, the system does not need to undergo through a new development cycle thus increasing its availability and, to a certain extent, its robustness. So far, the research in the area of self-adaptive systems has been focusing on the definition of the mechanisms for supporting self-adaptation. We argue that what is missing now is a structured and robust design process associated to these mechanisms. This design process should include a Requirement Engineering (RE) phase that somewhat differs from the traditional one. However, the identification of requirements for adaptation requires a good knowledge of the context in which the system will be executed. In this work, we consider the modeling of such context as part of the RE phase and we particularly focus on Service-Based Applications (SBAs). We argue that RE activities should be supported at run-time to handle context changes and to support adaptation for SBAs. We survey the state of the art for what concerns the elicitation, modeling, and analysis of requirements and will highlight some issues and challenges in order to support adaptation for SBAs.展开更多
The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wid...The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.展开更多
Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which...Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."展开更多
This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario acc...This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario account of the use of a Knowledge Support System. A system is described that demonstrates interaction with different forms of knowledge in concept vehicle design.It supports the creation of new designs by way of a solution generation and evaluation process that relies upon co-operation between the designer and the knowledge system. The results of user evaluation gave rise to a current research agenda which addresses the requirements of a multi-user platform for a design knowledge support environment for collaborative team work.展开更多
The use of agent technology in a dynamic environment is rapidly growing as one of the powerful technologies and the need to provide the benefits of the Intelligent Information Agent technique to massive open online co...The use of agent technology in a dynamic environment is rapidly growing as one of the powerful technologies and the need to provide the benefits of the Intelligent Information Agent technique to massive open online courses, is very important from various aspects including the rapid growing of MOOCs environments, and the focusing more on static information than on updated information. One of the main problems in such environment is updating the information to the needs of the student who interacts at each moment. Using such technology can ensure more flexible information, lower waste time and hence higher earnings in learning. This paper presents Intelligent Topic-Based Information Agent to offer an updated knowledge including various types of resource for students. Using dominant meaning method, the agent searches the Internet, controls the metadata coming from the Internet, filters and shows them into a categorized content lists. There are two experiments conducted on the Intelligent Topic-Based Information Agent: one measures the improvement in the retrieval effectiveness and the other measures the impact of the agent on the learning. The experiment results indicate that our methodology to expand the query yields a considerable improvement in the retrieval effectiveness in all categories of Google Web Search API. On the other hand, there is a positive impact on the performance of learning session.展开更多
基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud...基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术,以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明,MBSE在产品研发全生命周期,应用建模技术来支持系统需求、设计、分析、验证与确认等活动,在系统架构设计方面具有重要作用,将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容;系统建模语言(system modeling language,SysML)和对象过程方法(object process method,OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法;将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段,将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考,有助于对MBSE的未来发展态势进行预测。展开更多
文摘The challenge of transitioning from temporary humanitarian settlements to more sustainable human settlements is due to a significant increase in the number of forcibly displaced people over recent decades, difficulties in providing social services that meet the required standards, and the prolongation of emergencies. Despite this challenging context, short-term considerations continue to guide their planning and management rather than more integrated, longer-term perspectives, thus preventing viable, sustainable development. Over the years, the design of humanitarian settlements has not been adapted to local contexts and perspectives, nor to the dynamics of urbanization and population growth and data. In addition, the current approach to temporary settlement harms the environment and can strain limited resources. Inefficient land use and ad hoc development models have compounded difficulties and generated new challenges. As a result, living conditions in settlements have deteriorated over the last few decades and continue to pose new challenges. The stakes are such that major shortcomings have emerged along the way, leading to disruption, budget overruns in a context marked by a steady decline in funding. However, some attempts have been made to shift towards more sustainable approaches, but these have mainly focused on vague, sector-oriented themes, failing to consider systematic and integration views. This study is a contribution in addressing these shortcomings by designing a model-driving solution, emphasizing an integrated system conceptualized as a system of systems. This paper proposes a new methodology for designing an integrated and sustainable human settlement model, based on Model-Based Systems Engineering and a Systems Modeling Language to provide valuable insights toward sustainable solutions for displaced populations aligning with the United Nations 2030 agenda for sustainable development.
基金supported by the National Natural Science Foundation of China (Grant No. 50539010)
文摘A comprehensive safety evaluation system taking the most influential factors into account has been developed to evaluate the reliability of hydraulic metal structures. Applying the techniques of AI and DB, the idea of a one-machine and three-base system is proposed. The framework of the three-base system has been designed and the structural framework constructed in turn. A practical example is given to illustrate the process of using this system and it can be used for comparison and analysis purposes. The key technology of the system is its ability to reorganize and improve the expert system's knowledge base by establishing the expert system. This system utilizes the computer technology inference process, making safety evaluation conclusions more reasonable and applicable to the actual situation. The system is not only advanced, but also feasible, reliable, artificially intelligent, and has the capacity to constantly grow.
文摘Refugee settlements face several challenges in transitioning from a temporary planning approach to more sustainable settlements. This is mainly due to an increase in the number of forcibly displaced people over the last few decades, and the difficulties of sustainably providing social services that meet the required standards. The development of refugee settlements assumed that forcibly displaced people would return to their places or countries of origin. Unfortunately, displacement situations are prolonged indefinitely, forcing these people to spend most of their lives in conditions that are often deplorable and substandard, and therefore unsustainable. In most cases, the establishment of refugee settlements is triggered by an emergency caused by an influx of forcibly displaced people, who need to be accommodated urgently and provided with some form of international assistance and protection. This leaves little or no time for proper planning for long-term development as required. In addition, the current approach to temporary settlement harms the environment and can strain limited resources with ad hoc development models that have exacerbated difficulties. As a result, living conditions in refugee settlements have deteriorated over the last few decades and continue to pose challenges as to how best to design, plan, and sustain settlements over time. To contribute to addressing these challenges, this study proposes a new methodology supported by Model-Based Systems Engineering (MBSE) and a Systems Modeling Language (SysML) to develop a typical sustainable human settlement system model, which has functionally and operationally executed using a Systems Engineering (SE) approach. To assess the sustainability capacity of the proposed system, this work applies a matrix of crossed impact multiplication through a case study by conducting a system capacity interdependence analysis (SCIA) using the MICMAC methodology (Cross-impact matrix multiplication applied to classification) to assess the interdependency that exist between the sub-systems categories to deliver services at the system level. The sustainability analysis results based on capacity variables influence and dependency models shows that development activities in the settlement are unstable and, therefore, unsustainable since there is no apparent difference between the influential and dependent data used for the assessment. These results illustrate that an integrated system could improve human settlements’ sustainability and that capacity building in service delivery is beneficial and necessary.
文摘In this paper, the structure characteristics of open complex giant systems are concretely analysed in depth, thus the view and its significance to support the meta synthesis engineering with manifold knowledge models are clarified. Furthermore, the knowledge based multifaceted modeling methodology for open complex giant systems is emphatically studied. The major points are as follows: (1) nonlinear mechanism and general information partition law; (2) from the symmetry and similarity to the acquisition of construction knowledge; (3) structures for hierarchical and nonhierarchical organizations; (4) the integration of manifold knowledge models; (5) the methodology of knowledge based multifaceted modeling.
文摘The peculiar nature of control theory as a course that cut across a lot of major engineering disciplines calls for a look into how its learning can best be done without students feeling like they are wasting their time.This paper takes a look at control theory as subject cut across various engineering field and has a wide background that students must really be comfortable with.Its wide application and background pose a huge challenge to the teaching of control.It goes further to look into traditional method of teaching,Project-Based Learning Blooms Taxonomy.It then proposes applying Flipped Bloom Taxonomy to Project-based learning for a deep understanding of control systems.
基金the Key Project of Chinese Ministry of Education (No. 104166)
文摘It is urgent to solve various problems in electromagnetic (EM) engineering under the increasingly complicated environment. Some expert systems (ES) come into being just to keep up with the demand for solving these problems. Combined with the analysis of development orES technology and the development trend of EM engineering software in recent years, the application orES technology in EM engineering is discussed, and especially the progress of complete ES in electromagnetic compatible (EMC) is introduced.
文摘The paper presents a cognitive science framework for the analysis of knowledge-based systems,including people, media. simulation and expert systems, resulting in a practical model for the procedures ofknowledge engineering. Starting with the construct of a social organization model driven by anticipationand thed differentiating this into pesonal scientists with diverse relations to people and their internal andexternal communication, it provides powerful and general model of society. people, and the roles of peoplein society. This model extends naturally ic the role of conventional media in the knowledge processes ofsociety and the new roles of computer-based simulation and expert systems. In particular it provides amodel of knowledge transfer that enables the processes of knowledge engineering to be analyzed andautomated.
文摘Requirements of software systems tend to change over time. The speed of this tendency depends on the application domain the software system under consideration belongs to. If we consider novel contexts such as pervasive systems and systems supporting dynamic B2B interaction, requirements change so fast that the research community is studying how to build systems that are able to self-adapt on the fly to some of these changes. When this happens, the system does not need to undergo through a new development cycle thus increasing its availability and, to a certain extent, its robustness. So far, the research in the area of self-adaptive systems has been focusing on the definition of the mechanisms for supporting self-adaptation. We argue that what is missing now is a structured and robust design process associated to these mechanisms. This design process should include a Requirement Engineering (RE) phase that somewhat differs from the traditional one. However, the identification of requirements for adaptation requires a good knowledge of the context in which the system will be executed. In this work, we consider the modeling of such context as part of the RE phase and we particularly focus on Service-Based Applications (SBAs). We argue that RE activities should be supported at run-time to handle context changes and to support adaptation for SBAs. We survey the state of the art for what concerns the elicitation, modeling, and analysis of requirements and will highlight some issues and challenges in order to support adaptation for SBAs.
文摘The challenges posed by smart manufacturing for the process industries and for process systems engineering(PSE) researchers are discussed in this article. Much progress has been made in achieving plant- and site-wide optimization, hut benchmarking would give greater confidence. Technical challenges confrontingprocess systems engineers in developing enabling tools and techniques are discussed regarding flexibilityand uncertainty, responsiveness and agility, robustness and security, the prediction of mixture propertiesand function, and new modeling and mathematics paradigms. Exploiting intelligence from big data to driveagility will require tackling new challenges, such as how to ensure the consistency and confidentiality ofdata through long and complex supply chains. Modeling challenges also exist, and involve ensuring that allkey aspects are properly modeled, particularly where health, safety, and environmental concerns requireaccurate predictions of small but critical amounts at specific locations. Environmental concerns will requireus to keep a closer track on all molecular species so that they are optimally used to create sustainablesolutions. Disruptive business models may result, particularly from new personalized products, but that isdifficult to predict.
文摘Successful modeling and/or design of engineering systems often requires one to address the impact of multiple "design variables" on the prescribed outcome.There are often multiple,competing objectives based on which we assess the outcome of optimization.Since accurate,high fidelity models are typically time consuming and computationally expensive,comprehensive evaluations can be conducted only if an efficient framework is available.Furthermore,informed decisions of the model/hardware's overall performance rely on an adequate understanding of the global,not local,sensitivity of the individual design variables on the objectives.The surrogate-based approach,which involves approximating the objectives as continuous functions of design variables from limited data,offers a rational framework to reduce the number of important input variables,i.e.,the dimension of a design or modeling space.In this paper,we review the fundamental issues that arise in surrogate-based analysis and optimization,highlighting concepts,methods,techniques,as well as modeling implications for mechanics problems.To aid the discussions of the issues involved,we summarize recent efforts in investigating cryogenic cavitating flows,active flow control based on dielectric barrier discharge concepts,and lithium(Li)-ion batteries.It is also stressed that many multi-scale mechanics problems can naturally benefit from the surrogate approach for "scale bridging."
文摘This paper addresses the question of how to support the designer with appropriate knowledge during conceptual design. It begins with a discussion of knowledge-based support for design and is followed by a scenario account of the use of a Knowledge Support System. A system is described that demonstrates interaction with different forms of knowledge in concept vehicle design.It supports the creation of new designs by way of a solution generation and evaluation process that relies upon co-operation between the designer and the knowledge system. The results of user evaluation gave rise to a current research agenda which addresses the requirements of a multi-user platform for a design knowledge support environment for collaborative team work.
文摘The use of agent technology in a dynamic environment is rapidly growing as one of the powerful technologies and the need to provide the benefits of the Intelligent Information Agent technique to massive open online courses, is very important from various aspects including the rapid growing of MOOCs environments, and the focusing more on static information than on updated information. One of the main problems in such environment is updating the information to the needs of the student who interacts at each moment. Using such technology can ensure more flexible information, lower waste time and hence higher earnings in learning. This paper presents Intelligent Topic-Based Information Agent to offer an updated knowledge including various types of resource for students. Using dominant meaning method, the agent searches the Internet, controls the metadata coming from the Internet, filters and shows them into a categorized content lists. There are two experiments conducted on the Intelligent Topic-Based Information Agent: one measures the improvement in the retrieval effectiveness and the other measures the impact of the agent on the learning. The experiment results indicate that our methodology to expand the query yields a considerable improvement in the retrieval effectiveness in all categories of Google Web Search API. On the other hand, there is a positive impact on the performance of learning session.
文摘基于IEEE及国际系统工程协会(International Council on Systems Engineering,INCOSE)社区会刊,提取与基于模型的系统工程(model based systems engineering,MBSE)领域相关的167篇顶刊的关键词和摘要。采用Python及其第三方库WordCloud技术,以可视化形式展示MBSE领域研究内容并对MBSE发展态势进行研究。研究结果表明,MBSE在产品研发全生命周期,应用建模技术来支持系统需求、设计、分析、验证与确认等活动,在系统架构设计方面具有重要作用,将MBSE与安全性分析、可靠性分析方法结合也是MBSE的重要研究内容;系统建模语言(system modeling language,SysML)和对象过程方法(object process method,OPM)分别是目前MBSE研究领域中最受欢迎的建模语言和建模方法;将MBSE方法与本体进行结合是规范MBSE模型表达的重要手段,将MBSE与信息物理系统、数字孪生、并行工程领域进行融合研究是MBSE的重要发展方向。所提研究为使用WordCloud文本分析技术来探索当前的MBSE研究提供了技术路线参考,有助于对MBSE的未来发展态势进行预测。