In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty ...In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.展开更多
Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more a...Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system(IHPS) based on a nonlinear unknown input observer(NUIO) is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS.展开更多
Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and contro...Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and controlling quality in highdimensional multistage processes are studied. We propose a deviance residual-based multivariate exponentially weighted moving average(MEWMA) control chart with a variable selection procedure. We demonstrate that it outperforms the existing multivariate SPC charts in terms of out-of-control average run length(ARL) for the detection of process mean shift.展开更多
Recent studies show that artificial intelligence(AI),such as machine learning and deep learning,models can be adopted and have advantages in fault detection and diagnosis for building energy systems.This paper aims to...Recent studies show that artificial intelligence(AI),such as machine learning and deep learning,models can be adopted and have advantages in fault detection and diagnosis for building energy systems.This paper aims to conduct a comprehensive and systematic literature review on fault detection and diagnosis(FDD)methods for heating,ventilation,and air conditioning(HVAC)systems.This review covers the period from 2013 to 2023 to identify and analyze the existing research in this field.Our work concentrates explicitly on synthesizing AI-based FDD techniques,particularly summarizing these methods and offering a comprehensive classification.First,we discuss the challenges while developing FDD methods for HVAC systems.Next,we classify AI-based FDD methods into three categories:those based on traditional machine learning,deep learning,and hybrid AI models.Additionally,we also examine physical model-based methods to compare them with AI-based methods.The analysis concludes that AI-based HVAC FDD,despite its higher accuracy and reduced reliance on expert knowledge,has garnered considerable research interest compared to physics-based methods.However,it still encounters difficulties in dynamic and time-varying environments and achieving FDD resolution.Addressing these challenges is essential to facilitate the widespread adoption of AI-based FDD in HVAC.展开更多
文摘In previous researches on a model-based diagnostic system, the components are assumed mutually independent. Howerver , the assumption is not always the case because the information about whether a component is faulty or not usually influences our knowledge about other components. Some experts may draw such a conclusion that 'if component m 1 is faulty, then component m 2 may be faulty too'. How can we use this experts' knowledge to aid the diagnosis? Based on Kohlas's probabilistic assumption-based reasoning method, we use Bayes networks to solve this problem. We calculate the posterior fault probability of the components in the observation state. The result is reasonable and reflects the effectiveness of the experts' knowledge.
基金co-supported by the National Natural Science Foundation of China (Nos. 51620105010, 51575019 and 51675019)National Basic Research Program of China (No. 2014CB046400)111 Program of China
文摘Hydraulic piston pumps are commonly used in aircraft. In order to improve the viability of aircraft and energy efficiency, intelligent variable pressure pump systems have been used in aircraft hydraulic systems more and more widely. Efficient fault diagnosis plays an important role in improving the reliability and performance of hydraulic systems. In this paper, a fault diagnosis method of an intelligent hydraulic pump system(IHPS) based on a nonlinear unknown input observer(NUIO) is proposed. Different from factors of a full-order Luenberger-type unknown input observer, nonlinear factors of the IHPS are considered in the NUIO. Firstly, a new type of intelligent pump is presented, the mathematical model of which is established to describe the IHPS. Taking into account the real-time requirements of the IHPS and the special structure of the pump, the mechanism of the intelligent pump and failure modes are analyzed and two typical failure modes are obtained. Furthermore, a NUIO of the IHPS is performed based on the output pressure and swashplate angle signals. With the residual error signals produced by the NUIO, online intelligent pump failure occurring in real-time can be detected. Lastly, through analysis and simulation, it is confirmed that this diagnostic method could accurately diagnose and isolate those typical failure modes of the nonlinear IHPS. The method proposed in this paper is of great significance in improving the reliability of the IHPS.
基金supported by the Qatar National Research Fund(NPRP5-364-2-142NPRP7-1040-2-293)
文摘Monitoring high-dimensional multistage processes becomes crucial to ensure the quality of the final product in modern industry environments. Few statistical process monitoring(SPC) approaches for monitoring and controlling quality in highdimensional multistage processes are studied. We propose a deviance residual-based multivariate exponentially weighted moving average(MEWMA) control chart with a variable selection procedure. We demonstrate that it outperforms the existing multivariate SPC charts in terms of out-of-control average run length(ARL) for the detection of process mean shift.
文摘Recent studies show that artificial intelligence(AI),such as machine learning and deep learning,models can be adopted and have advantages in fault detection and diagnosis for building energy systems.This paper aims to conduct a comprehensive and systematic literature review on fault detection and diagnosis(FDD)methods for heating,ventilation,and air conditioning(HVAC)systems.This review covers the period from 2013 to 2023 to identify and analyze the existing research in this field.Our work concentrates explicitly on synthesizing AI-based FDD techniques,particularly summarizing these methods and offering a comprehensive classification.First,we discuss the challenges while developing FDD methods for HVAC systems.Next,we classify AI-based FDD methods into three categories:those based on traditional machine learning,deep learning,and hybrid AI models.Additionally,we also examine physical model-based methods to compare them with AI-based methods.The analysis concludes that AI-based HVAC FDD,despite its higher accuracy and reduced reliance on expert knowledge,has garnered considerable research interest compared to physics-based methods.However,it still encounters difficulties in dynamic and time-varying environments and achieving FDD resolution.Addressing these challenges is essential to facilitate the widespread adoption of AI-based FDD in HVAC.